人教版初中数学教案8篇.docx
《人教版初中数学教案8篇.docx》由会员分享,可在线阅读,更多相关《人教版初中数学教案8篇.docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 人教版初中数学教案8篇 人教版初中数学教案篇1 理解一元二次方程求根公式的推导过程,了解公式法的概念,会娴熟应用公式法解一元二次方程. 复习详细数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a0)的求根公式的推导,并应用公式法解一元二次方程. 重点 求根公式的推导和公式法的应用. 难点 一元二次方程求根公式的推导. 一、复习引入 1.前面我们学习过解一元二次方程的“直接开平方法”,比方,方程 (1)x2=4(2)(x-2)2=7 提问1这种解法的(理论)依据是什么? 提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特别二次方程有效,不能实施于一般形式的二次方程.
2、) 2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.) (学生活动)用配方法解方程2x2+3=7x (教师点评)略 总结用配方法解一元二次方程的步骤(学生总结,教师点评). (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q的形式,假如q0,方程的根是x=-pq;假如q 二、探究新知 用配方法解方程: (1)ax2-7x+3=0(2)ax2+bx+3=0 假如这个一元二次方程是一般形式ax2+bx+c=0(a0),你
3、能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程肯定有解吗?什么状况下有解?) 分析:由于前面详细数字已做得许多,我们现在不妨把a,b,c也当成一个详细数字,依据上面的解题步骤就可以始终推下去. 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+bax=-ca 配方,得:x2+bax+(b2a)2=-ca+(b2a)2 即(x+b2a)2=b2-4ac4a2 4a20,当b2-4ac0时,b2-4ac4a20 (x+b2a)2=(b2-4ac
4、2a)2 直接开平方,得:x+b2a=b2-4ac2a 即x=-bb2-4ac2a x1=-b+b2-4ac2a,x2=-b-b2-4ac2a 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a,b,c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac0时,将a,b,c代入式子x=-bb2-4ac2a就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解 (4)由求根公式可知,一元二次方程最多有两个实数根. 例1用公式法解以下方程: (1)2x2-x-1=0(2
5、)x2+1.5=-3x (3)x2-2x+12=0(4)4x2-3x+2=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 补:(5)(x-2)(3x-5)=0 三、稳固练习 教材第12页练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应把握: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,留意移项要变号,尽量让a0;2)找出系数a,b,c,留意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果. (4)初步
6、了解一元二次方程根的状况. 五、作业布置 教材第17页习题4 人教版初中数学教案篇2 把握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简洁的方法因式分解法解一元二次方程,并应用因式分解法解决一些详细问题. 重点 用因式分解法解一元二次方程. 难点 让学生通过比拟解一元二次方程的多种方法感悟用因式分解法使解题更简便. 一、复习引入 (学生活动)解以下方程: (1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法) 教师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2
7、)直接用公式求解. 二、探究新知 (学生活动)请同学们口答下面各题. (教师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式? (学生先答,教师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成: (1)x(2x+1)=0(2)3x(x+2)=0 由于两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12. (2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?) 因此,我们可以发觉,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两
8、个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1解方程: (1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2 思索:使用因式分解法解一元二次方程的条件是什么? 解:略(方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的选项是() a.(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7 b.(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=25,x2=35 c.(x+2)2+4x=
9、0,x1=2,x2=-2 d.x2=x,两边同除以x,得x=1 三、稳固练习 教材第14页练习1,2. 四、课堂小结 本节课要把握: (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0. 五、作业布置 教材第17页习题6,8,10,11 人教版初中数学教案篇3 一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解: (1)组成不等式组的不等式必需是一元一次不等式; (2)从数量上看,不等式的个数必需是两个
10、或两个以上; (3)每个不等式在不等式组中的位置并不固定,它们是并列的。 二。一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共局部就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤: (1)先分别求出不等式组中各个不等式的解集; (2)利用数轴或口诀求出这些解集的公共局部,也就是得到了不等式组的解集。 三。不等式(组)的解集的数轴表示: 一元一次不等式组学问点 1、用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈; 2、不等式组的解集,可以在数轴上先画同各个不
11、等式的解集,找出公共局部即为不等式的解集。公共局部也就各不等式解集在数轴上的重合局部; 3、。我们依据一元一次不等式组,化简成最简不等式组后进展分类,通常就能把一元一次不等式组分成如上四类。 说明:当不等式组中,含有“”或“”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种根本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。 四。求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。 ?一元一次不等式组考点分析】 (1)考察不等式组的概念; (2)
12、考察一元一次不等式组的解集,以及在数轴上的表示; (3)考察不等式组的特解问题; (4)确定字母的取值。 ?一元一次不等式组学问点误区】 (1)思维误区,不等式与等式混淆; (2)不能正确地确定出不等式组解集的公共局部; (3)在数轴上表示不等式组解集时,混淆界点的表示方法; (4)考虑不周,漏掉隐含条件; (5)当有多个限制条件时,对不等式关系的开掘不全面,导致未知数范围扩大; (6)对含字母的不等式,没有对字母取值进展分类争论。 1、把握一元二次方程的根与系数的关系并会初步应用。 2、培育学生分析、观看、归纳的力量和推理论证的力量。 3、渗透由特别到一般,再由一般到特别的熟悉事物的规律。
13、4、培育学生去发觉规律的积极性及勇于探究的精神。 重点 根与系数的关系及其推导 难点 正确理解根与系数的关系。一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系。 一、复习引入 1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。 2、由上题可知一元二次方程的系数与根有着亲密的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比拟简单,是否有更简洁的关系? 3、由求根公式可知,一元二次方程ax2+bx+c=0(a0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观看两式右边,分母一样,分子是-b+b2-4ac与-b-b2-
14、4ac.两根之间通过什么计算才能得到更简洁的关系? 二、探究新知 解以下方程,并填写表格: 方程 x1 x2 x1+x2 x1x2 x2-2x=0 x2+3x-4=0 x2-5x+6=0 观看上面的表格,你能得到什么结论? (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q0)的两根x1,x2与系数p,q之间有什么关系? (2)关于x的方程ax2+bx+c=0(a0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜测吗? 解以下方程,并填写表格: 方程 x1 x2 x1+x2 x1x2 2x2-7x-4=0 3x2+2x-5=0 5x2-17x+6=0 小结:根与系
15、数关系: (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1x2=q(留意:根与系数关系的前提条件是根的判别式必需大于或等于零。) (2)形如ax2+bx+c=0(a0)的方程,可以先将二次项系数化为1,再利用上面的结论。 即:对于方程ax2+bx+c=0(a0) a0,x2+bax+ca=0 x1+x2=-ba,x1x2=ca (可以利用求根公式给出证明) 例1不解方程,写出以下方程的两根和与两根积: (1)x2-3x-1=0(2)2x2+3x-5=0 (3)13x2-2x=0 (4)2x2+6x=3 (5)x2-1
16、=0 (6)x2-2x+1=0 例2不解方程,检验以下方程的解是否正确? (1)x2-22x+1=0 (x1=2+1,x2=2-1) (2)2x2-3x-8=0 (x1=7+734,x2=5-734) 例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程。(你有几种方法?) 例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值。 变式一:已知方程x2-2kx-9=0的两根互为相反数,求k; 变式二:已知方程2x2-5x+k=0的两根互为倒数,求k. 三、课堂小结 1、根与系数的关系。 2、根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零。 四、作
17、业布置 1、不解方程,写出以下方程的两根和与两根积。 (1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0 (4)3x2+x+1=0 2、已知方程x2-3x+m=0的一个根为1,求另一根及m的值。 3、已知方程x2+bx+6=0的一个根为-2,求另一根及b的值 人教版初中数学教案篇4 教学目的: (一)学问点目标: 1.了解正数和负数在实际生活中的应用。 2.深刻理解正数和负数是反映客观世界中具有相反意义的理。 3.进一步理解0的特别意义。 (二)力量训练目标: 1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。 2.娴熟地用正、负数表示具有相反意义的量。 (三)
18、情感与价值观要求: 通过师生合作,联系实际,激发学生学好数学的热忱。 教学重点:能用正、负数表示具有相反意义的量。 教学难点:进一步理解负数、数0表示的量的意义。 教学方法:小组合作、师生互动。 教学过程: 创设问题情境,引入新课:分小组派代表,留意数学语言标准。 1.仔细想一想,你能用学过的学问解决以下问题吗? 某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径可以是 毫米,最小可以是 毫米。 2.以下说法中正确的( ) a、带有“一”的数是负数; b、0表示没有温度; c、0既可以看作是正数,也可以看作是负数。 d、0既不是正数,也不是负数。 师
19、这节课我们就来连续熟悉正、负数及它们在生活中的实际意义,特殊是数0。 讲授新课: 例1. 认真找一找,找了具有相反意义的量: 甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。 例2 (1)一个月内,小明的体重增加2千克,小华体重削减1千克,小强体重无变化,写出他们这个月的体重增长值; (2)2023年以下国家的商品进出口总额比上年的变化状况是: 美国削减6.4%,德国增长1.3%,法国削减2.4%, 英国削减3.5%,意大利增长0.2%,中国增长7.5%。 写出这些国家2023年商品进出口总额的增长率。 例3. 以下各数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初中 数学教案
限制150内