2023年高考全国乙卷数学(文)真题含答案.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023年高考全国乙卷数学(文)真题含答案.docx》由会员分享,可在线阅读,更多相关《2023年高考全国乙卷数学(文)真题含答案.docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. ( )A. 1B. 2C. D. 52 设全集,集合,则( )A. B. C. D. 3. 如图,网格纸上绘制一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( ) A. 24B. 26C. 28D. 304. 在中,内角对边分别是,若,且,则( )A. B. C. D. 5. 已知是偶函数,则( )A. B. C. 1D. 26. 正方形的边长是2,是的中点,则( )A. B. 3C. D. 57. 设O为平面坐标系坐标原点,在区域内随机取一点A,则直线OA的倾斜角不大于的概率为( )A. B. C. D.
2、 8. 函数存在3个零点,则的取值范围是( )A. B. C. D. 9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A. B. C. D. 10. 已知函数在区间单调递增,直线和为函数的图像的两条对称轴,则( )A. B. C. D. 11. 已知实数满足,则的最大值是( )A. B. 4C. D. 712. 设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )A. B. C. D. 二、填空题13. 已知点在抛物线C:上,则A到C的准线的距离为_.14. 若,则_15. 若x,y满足约束条件,则的最大值
3、为_.16. 已知点均在半径为2的球面上,是边长为3的等边三角形,平面,则_三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,试验结果如下:试验序号12345678910伸缩率545533551522575544541568596548伸缩率536527543530560533522550576536记,记的样本平均数为,样本方差为(1)求,;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处
4、理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)18. 记为等差数列的前项和,已知(1)求的通项公式;(2)求数列前项和19. 如图,在三棱锥中,的中点分别为,点在上,(1)求证:/平面;(2)若,求三棱锥的体积20. 已知函数(1)当时,求曲线在点处的切线方程(2)若函数在单调递增,求的取值范围21. 已知椭圆的离心率是,点在上(1)求的方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点【选修4-4】(10分)22. 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立
5、极坐标系,曲线的极坐标方程为,曲线:(为参数,).(1)写出的直角坐标方程;(2)若直线既与没有公共点,也与没有公共点,求的取值范围【选修4-5】(10分)23. 已知(1)求不等式的解集;(2)在直角坐标系中,求不等式组所确定的平面区域的面积2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. ( )A. 1B. 2C. D. 5【答案】C【解析】【分析】由题意首先化简,然后计算其模即可.【详解】由题意可得,则.故选:C.2. 设全集,集合,则( )A. B. C. D. 【答案】A【解析】【分析】由题意可得的值,然后计算即可.【详解】由题意可得,则.故选:A.3. 如图
6、,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( ) A. 24B. 26C. 28D. 30【答案】D【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体中,点为所在棱上靠近点三等分点,为所在棱的中点,则三视图所对应的几何体为长方体去掉长方体之后所得的几何体, 该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:.故选:D.4. 在中,内角的对边分别是,若,且,则( )A. B. C. D. 【答案】C【解析】【分析】首先利用正弦定理边化角,然后结合诱导公式和两角
7、和的正弦公式求得的值,最后利用三角形内角和定理可得的值.【详解】由题意结合正弦定理可得,即,整理可得,由于,故,据此可得,则.故选:C.5. 已知是偶函数,则( )A. B. C. 1D. 2【答案】D【解析】【分析】根据偶函数的定义运算求解.【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.6. 正方形的边长是2,是的中点,则( )A. B. 3C. D. 5【答案】B【解析】【分析】方法一:以为基底向量表示,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求,进而根据数量积的定义运算求解.【详解】方法一:以为基底向量,可
8、知,则,所以;方法二:如图,以为坐标原点建立平面直角坐标系,则,可得,所以;方法三:由题意可得:,在中,由余弦定理可得,所以.故选:B.7. 设O为平面坐标系的坐标原点,在区域内随机取一点A,则直线OA的倾斜角不大于的概率为( )A. B. C. D. 【答案】C【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域表示以圆心,外圆半径,内圆半径的圆环,则直线的倾斜角不大于的部分如阴影所示,在第一象限部分对应的圆心角,结合对称性可得所求概率.故选:C.8. 函数存在3个零点,则的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】写出,并求出极值点,转
9、化为极大值大于0且极小值小于0即可.【详解】,则,若要存在3个零点,则要存在极大值和极小值,则,令,解得或,且当时,当,故的极大值为,极小值为,若要存在3个零点,则,即,解得,故选:B.9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A. B. C. D. 【答案】A【解析】【分析】根据古典概率模型求出所有情况以及满足题意得情况,即可得到概率.【详解】甲有6种选择,乙也有6种选择,故总数共有种,若甲、乙抽到的主题不同,则共有种,则其概率为,故选:A.10. 已知函数在区间单调递增,直线和为函数的图像的两条对称轴,则(
10、)A. B. C. D. 【答案】D【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入即可得到答案.【详解】因为在区间单调递增,所以,且,则,当时,取得最小值,则,则,不妨取,则,则,故选:D.11. 已知实数满足,则的最大值是( )A. B. 4C. D. 7【答案】C【解析】【分析】法一:令,利用判别式法即可;法二:通过整理得,利用三角换元法即可,法三:整理出圆的方程,设,利用圆心到直线的距离小于等于半径即可.【详解】法一:令,则,代入原式化简得,因为存在实数,则,即,化简得,解得,故 的最大值是,法二:,整理得,令,其中,则,所以,则,即时,取得最大值,法三:由可得,设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 全国 数学 真题含 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内