高中数学知识盘点必修五.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学知识盘点必修五.pdf》由会员分享,可在线阅读,更多相关《高中数学知识盘点必修五.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 -1-必修必修五五数学知识点数学知识点 第一章:解三角形第一章:解三角形 1、正弦定理:=2.(其中为外接圆的半径)=2,=2,=2 ;=2,=2,=2;:=:.用途:已知三角形两角和任一边,求其它元素;已知三角形两边和其中一边的对角,求其它元素。2、余弦定理:2=2+2 2,2=2+2 2,2=2+2 2.=2+2 22,=2+2 22,=2+2 22.用途:已知三角形两边及其夹角,求其它元素;已知三角形三边,求其它元素。做题中两个定理经常结合使用做题中两个定理经常结合使用.-2-3、三角形面积公式:=12=12=12 4、三角形内角和定理:在ABC 中,有+=(+)2=2+2 2=2 2
2、(+).5、一个常用结论:在中,;若2=2,则=或+=2.特别注意,在三角函数中,特别注意,在三角函数中,不成立。不成立。第二章:数列第二章:数列 1、数列中与+=+=,且=之间的关系:=1,(=1)1,(2).注意通项能否合并。2、等差数列:定义:如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,即1=d,(n2,nN+),那么这个数列就叫做等差数列。等差中项:若三数、成等差数列 =+2 通项公式:=1+(1)=+()或=+(、是常数).前项和公式:-3-=1+(1)2=(1+)2 常用性质:若+=+(,+),则+=+;下标为等差数列的项(,+,+2,),仍组成等差数列;数列
3、+(,为常数)仍为等差数列;若、是等差数列,则、+(、是非零常数)、+(,)、,也成等差数列。单调性:的公差为,则:)0d为递增数列;)0d为递减数列;)=0d为常数列;数列为等差数列=+(p,q 是常数)若等差数列的前项和,则、是等差数列。3、等比数列 定义:如果一个数列从第 2 项起,每一项与它的前一项的比等于同一个常数,那么个数列就叫做等比数列。等比中项:若三数、成等比数列 2=,(同号)。反之不一定成立。反之不一定成立。通项公式:=11=。前项和公式:=1(1)1=11。常用性质 若+=+(,+),则=;,+,+2,为等比数列,公比为(下标成等差数列,则对应的项成等比数列);数列(为不
4、等于零的常数)仍是公比为的等比数列;正项等比数列;则nannSkSkkSS2kkSS23 -4-是公差为的等差等差数列;若是等比数列,则,2,1,()是等比数列,公比依次是,2,1,.单调性:1 0,1或1 0,0 0,0 1或11 为递减数列;=1 为常数列;0,0)型的递推式:在原递推式+1=两边取对数得+1=+,令=得:+1=-7-+,化归为+1=+型,求出之后得=10.(注意:底数不一定要取10,可根据题意选择)。类型类型 倒数变换法:倒数变换法:形如1=1(为常数且 0)的递推式:两边同除于1,转化为1=11+形式,化归为+1=+型求出1的表达式,再求;还有形如+1=+的递推式,也可
5、采用取倒数方法转化成1+1=1+形式,化归为+1=+型求出1的表达式,再求.类型类型 形如+2=+1+型的递推式:用待定系数法,化为特殊数列 1的形式求解。方法为:设an+2 kan+1=h(an+1 kan),比较系数得h+k=p,hk=q,可解得h、k,于是an+1 kan是公比为h的等比数列,这样就化归为an+1=pan+q型。总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式an.5 5、非等差、等比数列前非等差、等比数列前项和公式的求法项和公式的求法 错位相减法 若数列为等差数列,数列为等比数列,则数列 的
6、求和就要采用此法.将数列 的每一项分别乘以的公比,然后在错位相减,进而可得到数列 的前n项和.此法是在推导等比数列的前n项和公式时所用的方法.裂项相消法 一般地,当数列的通项=(+1)(+2)(a,b1,b2,c 为常数)时,往往可将变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项:-8-设=+1+2,通分整理后与原式相比较,根据对应项系数相等得=21,从而可得 12211211=().()()()ccanbanbbbanbanb+常见的拆项公式有:1(+1)=11+1;1(21)(2+1)=12(12112+1);1+=1();1=+1;!=(+1)!.分组法求和 有一类数列,既不是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 知识 盘点 必修
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内