2015年生物化学与分子生物学重点.pdf
《2015年生物化学与分子生物学重点.pdf》由会员分享,可在线阅读,更多相关《2015年生物化学与分子生物学重点.pdf(57页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、生物化学与分子生物学重点(1)第一章绪论-、生物化学的的概念:生物化学(b i o c h e m i s t r y)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。二、生物化学的发展:1 .叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。2 .动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。3 .分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。三、生物化学研究的主要方面:1 .生物体的
2、物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。2 .物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收一中间代谢一排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。3 .细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。4 .生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。5 .遗传与繁殖:对生物体遗传与繁殖的分子机制
3、的研究,也是现代生物化学与分子生物学研究的个重要内容。第二章蛋白质的结构与功能、氨基酸:1 .结构特点:氨基酸(a m i n。a c i d)是蛋白质分子的基木组成单位。构成天然蛋白质分子的氨基酸约有2 0 种,除脯氨酸为a-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-a-氨基酸。2 .分 类:根据氨基酸的R 基团的极性大小可将氨基酸分为四类:非极性中性氨基酸(8 种);极性中性氨基酸(7 种);酸 性 氨 基 酸(G l u 和 A s p);碱性氨基酸(L y s、A r g 和 H i s)。二、肽键与肽链:肽键(pe pt i d e b on d)是指由一分子氨基酸的a -
4、竣基与另一分子氨基酸的a -氨基经脱水而形成的共价键(-C 0-N H-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N 端)与自山竣基端(C端),肽链的方向是N端一C端。三、肽键平面(肽单位):肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个a碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。四、蛋白质的分子结构:蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。-级结构为线状结构,二、三、四级结构为空间结构。1 .-级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结
5、构。2 .二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型:a-螺旋:其结构特征为:主链骨架围绕中心轴盘绕形成右手螺旋;螺旋每上升一圈是3.6个氨基酸残基,螺距为0.5 4 n m;相邻螺旋圈之间形成许多氢键;侧链基团位于螺旋的外侧。影 响 a -螺旋形成的因素主要是:存在侧链基团较大的氨基酸残基;连续存在带相同电荷的氨基酸残基;存在脯氨酸残基。B-折叠:其结构特征为:若干条肽链或肽段平行或反平行排列成片;所有肽键的C=0 和N-H形成链间氢键;侧链基团分别交替位于片层的上、下方。转 角:多肽链1 8 0 回折部分,通常由四个氨基酸残基构成,借 1、4 残基之间形
6、成氢键维系。无规卷曲:主链骨架无规律盘绕的部分。3 .三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫铺。4 .四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。五、蛋白质的理化性质:1 .两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的竣基,因此蛋白质与氨基酸一样具有两性解离的性质。蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。2 .蛋臼质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白
7、质亲水溶胶的两个重要因素。3 .蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为2 8 0 n m。4 .蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。六、蛋白质的分离与纯化:1 .盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸筱、氯化钠、硫酸钠
8、等。盐析时,溶液的p H在蛋白质的等电点处效果最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。2 .电泳:蛋白质分子在高于或低于其p l的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。3 .透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。4 .层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量。5.超速离心:利用物质密度的不同,经超速离心后,分布于不
9、同的液层而分离。超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S 成正比。七、氨基酸顺序分析:蛋白质多肽链的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤:1 .分离纯化蛋白质,得到定量的蛋白质纯品;2 .取一定量的样品进行完全水解,再测定蛋白质的氨基酸组成;3 .分析蛋白质的N-端和C-端氨基酸;4 .采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溪化氯)将蛋白质处理为若干条肽段;5 .分离纯化单一肽段;6 .测定各条肽段的氨基酸顺序。一般采用E d m a n 降解法,用异硫氟酸苯酯进行反应,将氨基酸降解后,逐一进行测定;7 .至少用两种不同的方法处理蛋白质,分
10、别得到其肽段的氨基酸顺序;8 .将两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。第三章核酸的结构与功能-、核酸的化学组成:1 .含氮碱:参与核酸和核苜酸构成的含氮碱主要分为喋吟碱和喷嚏碱两大类。组成核甘酸的喀啜碱主要有三种尿 喙 咤(U)、胞 喙 咤(C)和胸腺啥咤(T),它们都是喀咤的衍生物。组成核甘酸的喋吟碱主要有两种腺 喋 吟(A)和鸟喋吟(G),它们都是喋吟的衍生物。2 .戊糖:核甘酸中的戊糖主要有两种,即 B-D-核 糖 与 B-D-2-脱氧核糖,由此构成的核甘酸也分为核糖核甘酸与脱氧核糖核酸两大类。3 .核甘:核甘是由戊糖与含氮碱基经脱水缩合而生成的化合物。
11、通常是由核糖或脱氧核糖的C 1 B-羟基与喀咤碱N 1 或噪呛碱N 9 进行缩合,故生成的化学键称为B,N糖背键。其中由D-核糖生成者称为核糖核甘,而由脱氧核糖生成者则称为脱氧核糖核甘。由“稀有碱基”所生成的核昔称 为“稀有核昔”。假 尿 昔(W )就是由D-核糖的C 1 与尿啼咤的C 5相连而生成的核音。二、核甘酸的结构与命名:核甘酸是由核甘与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核甘酸和脱氧核糖核酸两大类。最常见的核甘酸为5 -核 甘 酸(5 常被省略)。5 -核甘酸又可按其在5 位缩合的磷酸基的多少,分为一磷酸核甘(核甘酸)、二磷酸核甘和三磷酸核甘。此外,生物体内还存在 些特殊的
12、环核苜酸,常见的为环一磷酸腺甘(cA M P)和环一磷酸鸟甘(cG M P),它们通常是作为激素作用的第二信使。核甘酸通常使用缩写符号进行命名。第一位符号用小写字母d 代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P 代表磷酸。三、核酸的一级结构:核甘酸通过3,,5,-磷酸二酯键连接起来形成的不含侧链的多核甘酸长链化合物就称为核酸。核酸具有方向性,5,-位上具有自由磷酸基的末端称为5 -端,3,-位上具有自由羟基的末端称为3,-端。D N A 由 d A M P、d G M P、d C M P 和 d T M P 四种脱氧核糖核甘酸所组成。D N A 的
13、一级结构就是指D N A 分子中脱氧核糖核昔酸的种类、数目、排列顺序及连接方式。R N A 由 A M P,G M P,C M P,U M P 四种核糖核甘酸组成。R N A 的一级结构就是指R N A 分子中核糖核甘酸的种类、数目、排列顺序及连接方式。四、D N A 的二级结构:D N A 双螺旋结构是D N A 二级结构的一种重:要形式,它是W a t s on 和 C r i ck两位科学家于1 9 53 年提出来的一种结构模型,其主要实验依据是C h a r g a f f 研究小组对D NA的化学组成进行的分析研究,即 D NA分子中四种碱基的摩尔百分比为A=T、G=C、A+G=T+
14、C (C h a r g a f f 原则),以及山W i l k i n s研究小组完成的D NA晶体X线衍射图谱分析。天然D NA的二级结构以B型为主,其结构特征为:为右手双螺旋,两条链以反平行方式排列;主链位于螺旋外侧,碱基位于内侧;两条链间存在碱基互补,通过氢键连系,且 A-T、G-C (碱基互补原则);螺旋的稳定因素为氢键和碱基堆砌力;螺旋的螺距为3.4 n m,直径为2 n m。五、D NA的超螺旋结构:双螺旋的D NA分子进步盘旋形成的超螺旋结构称为D NA的三级结构。绝大多数原核生物的D NA都是共价封闭的环状双螺旋,其三级结构呈麻花状。在真核生物中,双螺旋的D NA分子围绕一
15、蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体。核小体结构属于D NA的三级结构。六、D NA的功能:D NA的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。D NA分子中具有特定生物学功能的片段称为基因(g e n e)。-个生物体的全部D NA序列称为基因组(g e n o m e)。基因组的大小与生物的复杂性有关。七、R NA的空间结构与功能:R NA分子的种类较多,分子大小变化较大,功能多样化。R NA通常以单链存在,但也可形成局部的双螺旋结构。1.n i R NA的结构与功能:m R NA是单链核酸,其在真核生物中的初级产物称为H n R N
16、A。大多数真核成熟的m R NA分子具有典型的5 -端的7-甲基鸟甘三磷酸(m 7 G T P)帽子结构和3 -端的多聚腺苜酸(p o l y A)尾巴结构。m R NA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。m R NA分子中每三个相邻的核甘酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核甘酸三联体称为遗传密码(c o d e n)。2.t R NA 的结构与功能:t R NA 是分子最小,但含有稀有碱基最多的R NA。t R NA 的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为五个部分:氨基酸臂:由 t R NA 的 5 -端和3 -
17、端构成的局部双螺旋,3 -端都带有-C C A-0H 顺序,可与氨基酸结合而携带氨基酸。D H U 臂:含有二氢尿喀咤核甘,与氨基酰t R NA 合成酶的结合有关。反密码臂:其反密码环中部的三个核甘酸组成三联体,在蛋白质生物合成中,可以用来识别m R NA 上相应的密码,故称为反密码(an t i c o d e n)。T w C 臂:含保守的T w C 顺序,可以识别核蛋白体上的r R NA,促使t R NA 与核蛋白体结合。可变臂:位于T W C 臂和反密码臂之间,功能不详。3.r R NA 的结构与功能:r R NA 是细胞中含量最多的R NA,可与蛋白质一起构成核蛋白体,作为蛋白质生物
18、合成的场所。原核生物中的r R NA 有三种:5 S,1 6 S,2 3 S。真核生物中的r R NA 有四种:5 S,5.8 S,1 8 S,2 8 S。八、核酶:具有自身催化作用的R NA 称为核酶(r i bo z y m e),核酶通常具有特殊的分子结构,如锤头结构。九、核酸的一般理化性质:核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰为2 6 0n m。十、D NA 的变性:在理化因素作用下,D NA 双螺旋的两条互补链松散而分开成为单链,从而导致D NA 的理化性质及生物学性质发生改变,这种现象称为D NA 的变性。引起D NA 变性的因素主要有:高温,强酸强碱,有机溶剂等。D N
19、A 变性后的性质改变:增色效应:指 D NA 变性后对2 6 0n m 紫外光的光吸收度增加的现象;旋光性下降;粘度降低;生物功能丧失或改变。加热D NA 溶液,使其对2 6 0n m 紫外光的吸收度突然增加,达到其最大值一半时的温度,就是D NA的变性温度(融解温度,T m)。T m 的高低与D NA 分子中G+C 的含量有关,G+C 的含量越高,则 T m越高。十一-、D NA 的复性与分子杂交:将变性D NA 经退火处理,使其重新形成双螺旋结构的过程,称为D N A 的复性。两条来源不同的单链核酸(D N A 或 R N A),只要它们有大致相同的互补碱基顺序,以退火处理即可复性,形成新
20、的杂种双螺旋,这一现象称为核酸的分子杂交。核酸杂交可以是D N A-D N A,也可以是 D N A-R N A 杂交。不同来源的,具有大致相同互补碱基顺序的核酸片段称为同源顺序。常用的核酸分子杂交技术有:原位杂交、斑点杂交、S o u t h e r n 杂交及N o r t h e r n 杂交等。在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记,这种带有一定标记的已知顺序的核酸片段称为探针。十二、核酸酶:凡是能水解核酸的酶都称为核酸酶。凡能从多核甘酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核甘酸链中间开始水解核酸的酶称为核酸内切酶。能识别特定的核昔酸顺序
21、,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)。第四章酶一、酷的概念:酶(e n z y m e)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多功能醐)三大类。二、酶的分子组成:酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子两部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关。与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白牢固结合并与酶的催化活性有关的耐热低分子有机化合物
22、称为辅基。三、辅醐与辅基的来源及其生理功用:辅酶与辅基的生理功用主要是:运载氢原子或电子,参与氧化还原反应。运载反应基团,如酰基、氨基、烷基、竣基及碳单位等,参与基团转移。大部分的辅酶与辅基衍生于维生素。维 生 素(v i t a m i n)是指类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有Vi t A、Vi t D、Vi t E 和 Vi t K 四种;水溶性维生素有 Vi t B l,Vi t B 2,Vi t P P,Vi t B 6,V i t B 12,V i
23、t C,泛酸,生物素,叶酸等。1.T P P:即焦磷酸硫胺素,由硫胺素(V i t B l)焦磷酸化而生成,是脱酸酶的辅酶,在体内参与糖代谢过程中a -酮酸的氧化脱竣反应。2.F M N 和 F A D:即黄素单核甘酸(F M N)和黄素腺喋吟二核甘酸(F A D),是核黄素(V i t B 2)的衍生物。F M N 或 F A D 通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)。3 .N A D+和 N A D P+:即尼克酰胺腺噪吟二核甘酸(N A D+,辅 酶 I )和尼克酰胺腺噤吟二核甘酸磷酸(N A D P+,辅酶I I),是 V i t P P 的衍生物。N A D+和
24、N A D P+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单递氢体。4.磷酸毗哆醛和磷酸毗哆胺:是 Vit B6的衍生物。磷酸毗哆醛和磷酸毗哆胺可作为氨基转移酶,氨基酸脱竣酶,半胱氨酸脱硫酶等的辅酶。5.CoA:泛酸(遍多酸)在体内参与构成辅酶A (CoA)。CoA中的疏基可与竣基以高能硫酯键结合,在糖、脂、蛋白质代谢中起传递酰基的作用,是酰化酶的辅酶。6.生物素:是竣化能的辅基,在体内参与C02的固定和竣化反应。7.FH4:由叶酸衍生而来。四氢叶酸是体内-碳单位基团转移酶系统中的辅酶。8.Vit B12衍生物:Vit B12分子中含金属元素钻,故又称为钻胺素。Vit B12在体内有
25、多种活性形式,如 5-脱氧腺甘钻胺素、甲基钻胺素等。其中,5-脱氧腺背钻胺素参与构成变位酶的辅酶,甲基钻胺素则是甲基转移酶的辅酶。四、金属离子的作用:1.稳定构象:稳定醐蛋白催化活性所必需的分子构象:2.构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心;3.连接作用:作为桥梁,将底物分子与酶蛋白螯合起来。五、髓的活性中心:酶分子上具有一定空间构象的部位,该部位化学基团集中,直接参与将底物转变为产物的反应过程,这一部位就称为酶的活性中心。参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产物的,称为催化基团,这两类基团统称为活性中心内必
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 生物化学 分子生物学 重点
限制150内