大学毕业论文-—5000立方米球罐工艺设计.doc
《大学毕业论文-—5000立方米球罐工艺设计.doc》由会员分享,可在线阅读,更多相关《大学毕业论文-—5000立方米球罐工艺设计.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沈阳理工大学课程设计专用纸课程设计任务书学 院材料科学与工程专 业材料成型及控制工程学生姓名班级学号课程设计题目5000m球罐工艺设计实践教学要求与任务:1 写出该焊接方法的几种设计方案2 确定合适的焊接参数3 选择合适的破口形式4 撰写焊接工艺工作计划与进度安排:1 熟悉设计内容 2天2 查阅相关资料,提出可行方案 2天3 上机画各类焊缝图 1天4 书写说明书 3天5整理工艺卡 3天6 答辩指导教师: 201 年 月 日专业负责人:201 年 月 日学院教学副院长:201 年 月 日 成 绩 评 定 表学生姓名班级学号专 业材料成型及控制工程课程设计题目5000m球罐工艺设计评语组长签字:成
2、绩日期 20 年 月 日目录1 绪论1材料的焊接性分析11.1 16MnDR的学成分和力学性能11.2 16MnDR的焊接性分析21.3 焊接方法与填充材料的选择32 焊接结构制造工艺设计42.1球壳各带的厚度计算52.2焊缝的分类52.3焊接工艺参数62.4 球罐的焊接102.4.1 施焊环境102.4.2 焊工资格102.4.3 焊前准备102.4.4 焊接工艺113 焊接结构质量检验133.1 焊缝外观质量检查要求133.2 无损检测133.3 焊后修补133.4 焊后整体热处理143.5 水压试验和气密性试验143.5.1 水压试验143.5.2 气密性试验143.6去锈、涂装163.
3、7 球罐成品验收16参考文献17I1 绪论材料的焊接性分析1.1 16MnDR的化学成分和力学性能16MnDR 钢是细晶粒的铁素体型低温钢,细晶粒钢通过正火或调质处理后获得良好的综合性能,属低合金系统,温度等级为- 40 ,热轧热处理状态,其中碳及其它合金元素含量较低. (1)16MnDR钢的化学成分见表1-1。钢板以热轧、控轧或正火状态交货1。表1.1 16MnDR钢板的化学成分牌号化学成分(质量分数)CSiMnNiVNbAlsPS不大于16MnDR0.200.150.501.201.600.0200.0250.012根据国际焊接学会(IIW)所采用的碳当量(CE)计算公式: (%) 将16
4、MnDR所含化学成分的相应数值代入上式,计算其碳当量。通过计算得出,16MnDR的碳当量CE=0.40%0.47%。当CE=0.40%0.60%,钢的淬硬倾向逐渐增加,所以16MnDR属于有淬硬倾向的钢。但是,当CE不超过0.5%时,淬硬倾向尚不严重,焊接性较好,但随板厚增加需要采取一定的预热措施。650m3液体二氧化碳球罐的球壳板厚为38mm,所以在焊接前,为避免出现裂纹,应对其进行预热,预热温度为100150。16MnDR 钢碳当量不高,淬硬倾向小,室温下焊接一般不易产生冷裂纹。钢在轧制中,硫、磷含量控制较低,所以也不易产生热裂纹 (2)16MnDR钢的力学性能见表1-21 表1-2 16
5、MnDR钢板的力学性能和工艺性能牌号钢板公称厚度/mm拉伸试验冲击试验180弯曲试验弯心直径(b35mm)抗拉强度Rm/(N/mm2)屈服强度ReL/(N/mm2)伸长率A/%温度/冲击吸收能量KV2/J不小于不小于16MnDR61649062031521-4034d=2a1636470600295d=3a366046059028560100450580275-30341001204405702651.2 16MnDR的焊接性分析16MnDR 钢在焊接时,不需要采取特殊的工艺措施,当钢板厚度较大,焊接接头刚性拘束较大或环境温度过低时,可在焊接前进行合理的预热。有关资料表明,除了面心立方点阵的金
6、属材料(奥氏体钢、铝、铜等) 外,一切体心立方点阵或六方点阵的金属材料均有低温转脆的现象,而低温钢必须具备的,最主要的性能就是低能韧性。因此,必须在焊接过程中通过细化晶粒,合金化和提高纯净度等措施来对其焊接接头的组织和性能加以改善。特别是以铁素体为基的16MnDR钢,铁素体晶粒尺寸越细小,钢的脆性转变温度将越向低温方向移动,一定低温下的韧性值相应提高。通过上述分析,可以清楚地认识到:通过细化晶粒来保证16MnDR 钢焊接接头的低温韧性,这是制定16MnDR 钢焊接工艺的一个根本出发点。1.3焊接方法与填充材料的选择低温钢16MnDR的主要焊接方法有焊条电弧焊、埋弧焊和气体保护焊。对球罐焊接来说
7、主要采用焊条电弧焊。细晶粒低温钢焊条的选用原则是强度与使用温度。焊条:型号E5015-G(牌号示例J507RH)。 焊条电弧焊是手工操纵焊条进行焊接的一种电弧焊方法,俗称手工电弧焊,属于传统的焊接工艺方法。其特点是电弧柱的温度高于3000,且热量集中,与气焊方法相比,热效率较高。该方法有所需焊接设备简单、易于操作、灵活性好等优点22。J507RH是低氢钠型药皮的高韧性超低氢低合金钢焊条,采用直流反接。具有良好的焊接工艺,电弧稳定,脱渣容易,焊缝金属有优良的塑性、韧性和抗裂性能。可进行全位置焊接。适用于E36、D36、A537等低合金钢的重要结构焊接。如海洋平台、船舶、压力容器等。利用J507R
8、H焊条焊接时的参考电流:焊条直径为4.0mm时,焊接电流为130180A;焊条直径为5.0mm时,焊接电流为170240A。2 焊接结构制造工艺设计焊接结构制造即焊接结构生产,简称焊接生产。球罐的焊接结构制造工艺流程与其他焊接产品的制造流程大致相同,主要包括:生产的准备工作、备料加工工艺、装配焊接工艺以及焊后成品的热处理、质量检验、耐压试验、成品的涂装入库等6。在球罐的整个制造过程中,其制造难点是:瓣片的成形及其尺寸和形状精度的控制、罐体的装配技术及瓣片位置精度、装配焊接顺序、夹具的合理使用、焊缝质量及其密封性、罐体焊接变形的控制等。5000m球罐的焊接结构制造工艺流程见图2.1。图2.1 5
9、000m球罐的焊接结构制造工艺流程2.1球壳各带的厚度计算计算各带压力:P=1.6MPaP=1.6+0.6610(5.4-2.44)10=1.6195MPa (2.1) P=1.6195+0.6610(3.54+3.54)10=1.6662MPa (2.2) P=1.6662+0.66105.410=1.70184MPa (2.3)P=1.70184+0.66101.6610=1.7128MPa 球壳材料采用16MnDR,s=275MPa,常温下许用应力为 t=157MPa 取焊缝系数:=1.0 腐蚀裕量C=2mm,钢板厚度负偏差C=2mm,故厚度附加量C=C+C=2mm6液柱高度H: H=K
10、1R=1.608410600=17100mm (2.4)液体的静压力P=gH = 6649.81710010-9 =1.113MPa (2.5) (2.6) 将(2.1)(2.2)(2.3)Di及、C分别带入(2.6)并圆整后得到名义厚度=57mm =57mm =59mm =63mm =60mm2.2焊缝的分类根据国标GB1998钢制压力容器对压力容器主要受压部件焊接接头要分为A,B,C,D,E, F六类。A类焊缝(对接缝或搭接焊缝,不包括角接焊缝)A类焊缝的结构形式可以是对接焊缝或搭接焊缝,不包括角接焊缝。具体包括:圆筒、管子或圆锥壳上的纵向焊缝;球壳、成型封头、平封头、或平板、矩形截面容器
11、各侧板等上的任何焊缝,此处所说的任何焊缝指在上述各部件的任何方向、但属A类的任何焊缝结构形式;球形封头与圆筒、圆锥壳等相连接的环向焊缝。B类焊缝(对接缝或搭接焊缝,不包括角接焊缝)B类焊缝的结构形式可以是对接焊缝或搭接焊缝,但不包括角接焊缝。具体包括:圆筒、圆锥壳或接管上的环向焊缝;成型封头(半球形封头除外)与圆筒、圆锥壳或管子想连接的环向焊缝。C类焊缝(对接缝或搭接焊缝或角接焊缝)C类焊缝的结构形式包括法兰、平封头、端盖、管板与壳体间的搭接接头。D类焊缝的结构形式是指接管、人孔圈、手孔盖、加强圈、法兰与壳体或封头相连的T形和角接接头。E类接头包括吊耳、支撑、支座、及各种内件与壳体或封头内外表
12、面相接的角接接头。F类接头系在筒体、封头、接管、法兰和管板上的堆焊接头1。 2.3焊接工艺参数2.3.1焊接方法的选择16MnDR的主要焊接方法有焊条电弧焊、埋弧焊和气体保护焊。对球罐焊接来说主要采用焊条电弧焊。2.3.2焊条的选择对于大厚度的焊件来说,焊条直径应在45mm。对于背面难以清根的焊缝单面焊缝的打底焊以及封底焊道的焊接,宜采用直径不超过4mm的焊条,以保焊透;而立焊、横焊及仰焊的焊条直径不超过5mm3。焊条型号E5015牌号J507,烘干温度为350,保持时间1h22.3.3钢号分类分组由球形储罐焊接工程技术可知,16MnDR类别为Fe-1类,组别为2组2。2.3.4焊前预热焊前对
13、球壳板进行预热,预热的目的是:减缓焊接接头加热时温度梯度及冷却速度,适当延长在800500区间的冷却时间,改善焊缝金属和热影响区的显微组织,从而减少和避免产生淬硬组织,有利于氢的逸出,可防止冷裂纹的产生。热源采用液化石油气,定位焊和临时焊缝采用点状加热器,球壳焊缝采用条状加热器,且应放在焊缝小坡口的一侧。注意应保证加热的均匀性,预热温度为100150,实测层间温度不得低于100。温度的测量点在距焊缝中心50mm处,两侧对称测量。在整个焊接过程中应保持此温度。预热宽度为焊缝中心线两侧各3倍板厚,为114120mm。预热长度须在施焊长度两端各延伸150mm以上。拘束度较高的焊缝节点(如人孔、接管)
14、或环境温度低于5时,应采用较高的预热温度,且适当扩大预热范围。2.3.5电源种类及极性的选择2对于像J507这样的碱性焊条一般应采用直流电源且反极性焊接。2.3.6焊接电流的选择2焊接电流的选择一般根据焊条的直径来选择,在平焊时焊接电流与焊条直径之间的关系见表 2-1。表2-1 焊条电弧焊焊条直径与焊接电流的关系焊条直径 mm2.53.24.05.0焊接电流 A5080100130160200200250立焊、横焊和仰焊的电流一般比平焊电流小10%左右。2.3.7焊接层数与焊接道数焊接层数与坡口深度、焊接直径及焊接速度有关2,即n=S1/(0.81.2)dn为焊接层数 S1为坡口深度(mm)
15、d为焊条直径(mm)2.3.8坡口加工方法及清除坡口加工采用机械加工,其加工精度高,也可以采用火焰切割或碳弧气刨清根。对强度级别高、厚度较大的钢材,为防止其格式产生裂纹,应按焊接的预热工艺进行预热。碳弧气刨的坡口应仔细清除余碳,在坡口两侧约10mm内,应严格除去水、油、锈及脏污等。1。2.3.9坡口型式坡口是用来使电弧沿板厚熔入一定的深度,保证焊接接头的焊透,坡口形式应根据母材的结构形状,板材厚度及对焊接质量要求来设计,条件不同其接头及坡口形式也不同。在选择坡口形式时主要考虑一下因素:(1)是否能够保证工件焊透和便于操作;(2)坡口的形式应 容易加工;(3)尽可能提高焊接生产率和节省焊条; (
16、4)调整焊缝金属的化学成分。常用的坡口形式有I、V、U、X型,一般通过板厚来决定坡口。板厚为60mm左右的球壳板开坡口多数为双V形坡口7。2.3.10选择合适的焊层厚度 一般焊层厚度控制在34mm左右7。2.3.11焊接工艺参数4,7焊件工艺参数包括焊接电流、电弧电压、焊接速度、焊接线能量等。(1)焊接电流 焊接电流的大小主要根据焊条类型、焊条直径、焊件厚度、焊缝的空间位置接头形式、焊道层次等因素选取。焊接电流主要影响熔深。焊接中电流越大,效率越高,但飞溅大,烟熏大,容易产生咬边、烧穿、焊瘤等缺陷,同时影响焊缝成形。电流小,熔深就小,电弧不稳定,容易造成未焊透和夹渣等缺陷。因此,在保证不烧穿和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学毕业 论文 5000 立方米 工艺 设计
限制150内