6400m3立式储油罐结构设计-本科论文.doc
《6400m3立式储油罐结构设计-本科论文.doc》由会员分享,可在线阅读,更多相关《6400m3立式储油罐结构设计-本科论文.doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沈阳理工大学课程设计论文设计题目6400m3立式储油罐结构设计技术参数:直径 27900mm 长度 1046mm 材质 16MnR 壁厚 12.3mm,13.8mm,15.3mm,16.8mm,18.3mm,19.8mm设计任务:1.写出该结构的几种设计方案2.强度计算及尺寸选择3.绘制结构设计图4.撰写主要工艺过程5.撰写设计说明书工作计划与进度安排:1查阅资料 2天2设计计算并撰写设计说明书 5天3上机绘图 4天4答辩 1天指导教师(签字): 年 月 日 专业负责人(签字): 年 月 日学院院长(签字): 年 月 日课程设计任务书28目 录1 储罐及其发展概况12 设计方案22.1 选择设
2、计方法22.2 尺寸选择32.3 材料选择33 罐壁设计43.1 罐壁的强度计算43.2 储罐的风力稳定计算63.3 罐壁结构84 罐底设计94.1 罐底的应力计算95 罐顶设计125.1 拱顶结构及主要的几何尺寸125.2 扇形顶板尺寸135.3 包边角钢136 贮罐附件及其选用146.1 人孔146.2 通气孔166.3 贮罐进出液口186.4 法兰和垫片206.5 液面计21 6.6 盘梯.217 焊接结构设计227.1 焊缝的布置227.2 焊接方法237.3 焊缝顺序247.4 焊缝标注24参 考 文 献251 储罐及其发展概况油品和各种液体化学品的储存设备储罐是石油化工装置和储运系
3、统设施的重要组成部分。由于大型储罐的容积大、使用寿命长。热设计规范制造的费用低,还节约材料。20世纪70年代以来,内浮顶储油罐和大型浮顶油罐发展较快。第一个发展油罐内部覆盖层的施法国。1955年美国也开始建造此种类型的储罐。1962年美国德士古公司就开始使用带盖浮顶罐,并在纽瓦克建有世界上最大直径为187ft(61.6mm)的带盖浮顶罐。至1972年美国已建造了600多个内浮顶罐。1978年国内3000m3铝浮盘投入使用,通过测试蒸发损耗标定,收到显著效果。近20年也相继出现各种形式和结构的内浮盘或覆盖物1。世界技术先进的国家,都备有较齐全的储罐计算机专用程序,对储罐作静态分析和动态分析,同时
4、对储罐的重要理论问题,如大型储罐T形焊缝部位的疲劳分析,大型储罐基础的静态和动态特性分析,抗震分析等,以试验分析为基础深入研究,通过试验取得大量数据,验证了理论的准确性,从而使研究具有使用价值。近几十年来,发展了各种形式的储罐,尤其是在石油化工生产中大量采用大型的薄壁压力容器。它易于制造,又便于在内部装设工艺附件,并便于工作介质在内部相互作用等。2 设计方案2.1 选择设计方法2.1.1 正装法此种方法的特点是指把钢板从罐底部一直到顶部逐块安装起来,它在浮顶罐的施工安装中用得较多,即所谓充水正装法,它的安装顺序是在罐低及二层圈板安装后,开始在罐内安装浮顶,临时的支撑腿,为了加强排水,罐顶中心要
5、比周边浮筒低,浮顶安装完以后,装上水除去支撑腿,浮顶即作为安装操作平台,每安装一层后,将上升到上一层工作面,继续进行安装。2.1.2 倒装法先从罐顶开始从上往下安装,将罐顶和上层罐圈在地面上安装,焊好以后将第二圈板围在第一罐圈的外围,以第一罐圈为胎具,对中点焊成圆圈后,将第一罐圈及罐顶盖部分整体吊至第一、二罐圈相搭接的位置,停于点焊,然后在焊死环焊缝。用同样的方法把下面的部分依次点焊环焊,直到罐底板的角接焊死即成。2.1.3 卷装法将罐体先预制成整幅钢板,然后用胎具将其卷筒,在运至储罐基础上,将其卷筒竖起来,展成罐体装上顶盖封闭安装而建成。见几种:护坡式基础、环墙式基础、外环墙式基础、特殊构造
6、的基础。根据比较选用,护坡式基础2。2.2 尺寸的选择根据经济尺寸计算,,,体形系数为,符合要求2.3 材料的选择根据GB50341-2003_立式圆筒形钢制焊接油罐设计规范.来选取(1) 罐壁:钢板16MnR,尺寸为19006000mm,GB6654,在热轧正火下使用,公称板厚为616mm,许用应力为163MPa,(2) 钢管:16MnR,GB/T8163, 在热轧下使用,公称板厚为16mm,温度-20时的许用板厚为34mm,许用应力为163MPa,(3) 锻件:16Mn,JB4726,在正火或回火加正火下使用,公称板厚为300mm,温度20时,许用应力为150MPa,(4) 螺母:20或2
7、5钢,GB/T699(5) 螺栓: 35GrMoA,GB3077,温度 P0,所以在罐壁上不需要设置加强圈。故满足要求。3.3.3 液面晃动波高计算罐内液面晃动波高; ;式中非浮顶影响系数,取1.0;阻尼修正系数,当大于10s时,取=1.05;地震影响系数,取0.23; 故取=1.85-0.08=1.85-0.085.84=1.3828;3.3 罐壁结构3.3.1 截面与连接形式罐壁的纵截面由若干个壁板组成,其形状为从下至上逐级减薄的阶梯形,一般上壁板的厚度不超过下壁板的厚度,各壁板的厚度由计算可得,按标准规范,16MnR的最小厚度为6mm,为由于该罐壁是不等壁厚度的且较厚,因此各板之间采用对
8、接,这样可以减轻自重。罐壁的下部通过内外角焊缝与罐底的边缘板相连,上部有一圈包边角钢,这样既可以增加焊缝的强度,还可以增加罐壁的刚性。在液压作用下,罐壁中的纵向应力是占控制地位的。即罐壁的流度实际上是罐壁的纵焊缝所决定的。因而壁板的纵向焊接接头应采用全焊透的对接型。 为减少焊接影响和变形,相邻两壁板的纵向焊接接头宜向同一方向逐圈错开1/3板长,焊缝最小间距不小于1000mm。底圈壁板的纵向焊接接头与罐底边缘板对接焊缝接头之间的距离不得小于300mm。罐壁的环向焊接接头形式较多,主要为对接。底层壁板与罐底边缘板之间的连接应采用两侧连续角焊。在地震设防烈度不大于7度的地区建罐,底层壁板与边缘壁板之
9、间的连接应采用如图的焊接形式,且角焊接头应圆滑过渡,而在地震小于7度的地区可取K2=K13 。 图3.4底层壁板与边缘板的焊接3.3.2 壁板宽度壁板宽度越小,材料就越省。但环向接头数就越多,增加安装工作量。我国一般取壁板宽度不小于1600mm。根据GB709-2006选择B类,板宽1900mm,长度6000mm。4 罐底设计4.1 罐底的应力计算 中幅板的薄膜力 (4.1)罐壁与边缘板之间的约束弯矩 (4.2)式中t边缘板厚8(mm); 罐壁第一圈壁板特征系数,; 泊松比,0.3;R储罐半径,13.95m;储罐第一圈厚度,19.8mm; 中幅板的平均厚度,6mm;底板上的液压高度,11.00
10、m; P作用在罐底上的储液压力,P= ; 储液密度,850Kg/m3 ;L边缘板受弯宽度,50.00m;D边缘板弯曲刚度;罐壁边缘板特征系数,; ; ; 边缘板上表面的径向应力分布为 (4.3)边缘板上表面的环向应力分布为 (4.4)式中-边缘板受弯区域内任一点的弯矩 如图4.3所示的力的平衡关系图4.3 力的平衡关系图再分别求出及的弯矩Mx 当x=0时 当x=时 当时 所以当x=时,有最大值且所以 故均为安全5 罐顶设计5.1拱顶结构及主要的几何尺寸拱顶罐是目前立式圆柱形储罐中使用最广泛的一种罐顶形式,拱形的主体是球体,它本身是重要的结构,储罐没有衍架和立柱,结构简单,刚性好,承压能力强。球
11、面由中小盖板瓜皮板组成,瓜皮板一般做成偶数,对称安排,板与板之间相互搭接,搭接宽度不小于5倍板厚,且不小于25mm实际搭接宽度多采用40mm罐顶的外侧采用连接焊,内侧间断焊,中心盖板搭在瓜皮板上,搭接宽度一般取50mm,顶板的厚度为46mm。用包边角钢连接的拱顶只有一个曲率,所以又称球顶。这种结构形式在拱顶与罐壁的连接处,(即拱脚)边缘应力较大,为防止油罐破坏装油高度不宜超过拱脚,即拱顶部分不能装油,但球顶罐制作方便,因而得到较广泛的应用。(1) 拱顶的球面半径一般取Rn=0.81.2D式中D-储罐直径,27.9m;取Rn=1.0D=27900mm按表5-2,顶板厚度为6mm,带肋(2) 0
12、、D2 、a、b、根据图可知,有 sin0 = 0 =30 sin= 式中D2 -中小孔直径,查表得D2 =2000-250=1900mm sin0 = 0 =2.07 a-取25mm b-取30 mm5.2 扇形顶板尺寸扇形顶板块数n最好为偶数,选择n=20,扇形顶板小头的弧长CD不得小于180 mm, 则瓜边板的展开式状。大头展开半径R1=Rtg =27900tg30=16108mm小头展开半径R2=Rtg=27900tg2.07 =1008.42mm大头弧长=mm小头弧长展开长度大头弦长小头弦长5.3 包边角钢(1)包边角钢与罐顶板之间采用连接较弱,仅需在外侧采用单面连续焊,以保证储罐的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6400 m3 立式 储油罐 结构设计 本科 论文
限制150内