供配电降压变电站设计-学位论文.doc
《供配电降压变电站设计-学位论文.doc》由会员分享,可在线阅读,更多相关《供配电降压变电站设计-学位论文.doc(44页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、供配电设计摘要变电站作为电力系统中的重要组成部分,直接影响整个电力系统的安全与经济运行。本论文中待设计的变电站是一座降压变电站,在系统中起着汇聚和分配电能的作用,担负着向该地区工厂、农村供电的重要任务。该变电站的建成,不仅增强了当地电网的网络结构,而且为当地的工农业生产提供了足够的电能,从而达到使本地区电网安全、可靠、优质、经济地运行的目的。首先通过对原始资料的分析及根据变电站的总负荷选择主变压器,同时根据主接线的经济可靠、运行灵活的要求,选择了两种待选主接线方案进行了技术比较,淘汰较差的方案,确定了变电站电气主接线方案。首先通过对原始资料的分析及根据变电站的总负荷选择主变压器,同时根据主接线
2、的经济可靠、运行灵活的要求,选择了两种待选主接线方案进行了技术比较,淘汰较差的方案,确定了变电站电气主接线方案。最后,做了防雷保护、继电保护、并绘制了电气主接线图。关键词:变电站,降压,电气设备目 录摘 要I第1章 设计内容和任务11.1 原始资料分析11.1.1.变电站的建设规模11.1.2.电力系统与本所的连接情况11.1.3.计算负荷的确定21.2.设计原则和基本要求21.3.设计内容3第二章 主变压器的选择42.1.主变台数的确定42.2.本变电站站用变压器的选择7第三章 电气主接线的选择83.1.选择原则83.1.1.主接线设计的基本要求及原则83.1.2.主接线的基本形式和特点93
3、.2.变电站的各侧主接线方案的拟定93.2.1.110KV侧主接线方案103.2.2.35KV侧主接线方案123.2.3.10KV侧主接线方案13第四章 短路电流计算154.1.短路电流计算的主要目的154.2.短路电流计算的假设154.2.1.进行以下数据的计算154.2.2.三相短路瞬态过程中某一时刻短路电流周期分量有效值的计算。154.3.短路电流计算的一般规定154.4.短路电流计算步骤164.5.短路点的设置原则174.6.网络参数标么值计算174.6.1.网络参数及基准值计算174.6.2.取基准值174.6.3.各元件参数标么值计算(最大运行方式下)174.6.4.短路点的选择和
4、等值网络图184.6.5.最大运行方式下三相短路电流计算184.6.6.最小运行方式下三相短路电流计算194.6.7.三相对称短路电流计算结果汇总表21第五章 导体和电气设备的选择225.1.电气设备的选择原则225.2.按短路情况校验235.3.互感器的选择285.4.母线的选择305.5.高压熔断器的选择32第六章 变电站防雷保护356.1.变电所的保护对象356.2.电工装置的防雷措施356.3.本设计的防雷保护方案376.4.接地装置39第7章 继电保护407.1.继电保护部分配置407.1.1.主变压器的保护40参考文献44致 谢45附 录4643第1章 设计内容和任务1.1 原始资
5、料分析1.1.1电力系统与本所的连接情况待设计的变电站是一座降压变电站,担负着向该地区农业排灌、全团居民及乡镇企业用电负荷的重要任务。本变电站有两回平行线路与110kV电力系统连接,有一回35kV电力系统连接,有六回10kv电力系统相连。本变电站在系统最大运行方式下的系统正、负阻抗的标么值示意图如图1-1(Sj=100MVA),110kV及35kV电源容量为无穷大,阻抗值各包含平行线路阻抗在内。图1-1 变电所连接示意图变电所不考虑装调相机、电容器等无功补偿设备,35kV因电网线路的电容电流较少,也不装设消弧线圈。110kV出线无电源。电力负荷水平110kV进出线共2回,两回进线为110kV的
6、平行供电线路,正常送电容量各为35000KVA。35kV进出线共2回,两回进线连接着35kV电源,输送容量各为35000KVA。10kV出线共12回,全部为架空线路,其中3回每回输送容量按5000KVA设计;另外5回每回输送容量为4000KVA,再预留四个出线间隔,待以后扩建。本变电站自用电主要负荷如表1-1。表1-1 110kV变电站自用电负荷序 号设备名称额定容量(kW)功率因数(cos)安装台数工作台数备 注1主充电机200.8511周期性负荷2浮充电机4.50.8511经常性负荷3主变通风0.150.853232经常性负荷4蓄电池通风2.70.8511经常性负荷5检修、试验用电150.
7、85经常性负荷6载波通讯用电10.85经常性负荷7屋内照明5.28屋外照明4.59生活水泵4.50.8522周期性负荷10福利区用电1.50.85周期性负荷1.1.3.计算负荷的确定当用电设备组计算负荷直接相加时,按需要系数法,取Kp=0.80.9,总的有功负荷:P30=Kp*30.i,取系数为0.85得:S=5.2+4.5+(20+4.5+0.15*32+2.7+15+1+4.5*2+1.5)*0.8549.725KW环境条件当地年最高温度39.1,年最低温度5.9,最热月平均最温度29;最热月平均地下0.8m土壤温度21.5。当地海拔高度1518.3m。当地雷电日T=25.1日/年。系统负
8、荷情况计算1、35KV最终两回出线,负荷同时率按0.6考虑,负荷增长率为4%。 35KV总负荷为:(350.8)20.6(1+4%)5=63.87MVA2、10KV最终十二回出线,负荷同时率按0.6考虑,负荷增长率为4%。10K负荷为:3(50.8)0.6(1+4%)5+5(40.8)0.6(1+4%)5=31.94MVA所以变电站考虑扩建后送出的总负荷为:S总= S35+S10=95.81MVA1.2.设计原则和基本要求设计按照国家标准要求和有关设计技术规程进行,要求对用户供电可靠、保证电能质量、接线简单清晰、操作方便、运行灵活、投资少、运行费用低,并且具有可扩建的方便性。要求如下:选择主变
9、压器台数、容量和型式(一般按变电站建成5-10年的发展规划进行选择,并应考虑变压器正常运行和事故时的过负荷能力);设计变电所电气主接线;短路电流计算;主要电气设备的选择及各电压等级配电装置类型的确定。1.3.设计内容变压器的连接组别必须和系统电压相位一致,否则,不能并列运行,电力系统采用的绕组连接方式只有星形和三角形两种,因此对于三相双绕组变压器的高压侧,110KV及以上电压等级,三相绕组都采用“YN”连接,35KV及以下采用“Y”连接;对于三相双绕组变压器的低压侧,三相绕组采用“d”连接,若低电压侧电压等级为380/220V,则三相绕组采用“yn”连接,在变电所中,为了限制三次谐波,我们选用
10、“Ynd11”常规连接的变压器连接组别。本次设计的是一个降压变电站,有三个电压等级(110kV35kV10kV),110kV主接线采用双母线接线方式,两路进线,35kV和10kV主接线均采用单母线分段接线方式。主变压器容量为2*315MVA,110kV与35kV之间采用YoYo12连接方式,110kV与10kV之间采用Yo11连接方式。本设计采用的主变压器有两个出线端子,一端接35kV的引出线,另一端接10kV的引出线。设计中主要涉及的是变电站内部电气部分的设计,并未涉及到出线线路具体应用到什么用户,所以负荷统计表相对比较简洁,也减少了电气主接线图的制作难度。第2章 主变压器的选择2.1主变台
11、数的确定待设计变电站在电力系统中的地位:本变电站为一降压变电站,在系统中起着汇聚和分配电能的作用,担负着向该地区工厂、农村供电的重要任务,地位比较重要。该变电站的建成,不仅增强了当地电网的网络结构,而且为当地的工农业生产提供了足够的电能,从而达到使本地区电网安全、可靠、优质、经济地运行的目的。1.待设计变电站的建设规模: (1)电压等级110Kv/35kV/10kV (2)线路回路数量 110kV进出线共2回,两回进线为110kV的平行供电线路,正常送电容量各为35000KVA。35kV进出线共1回,两回进线连接着35kV电源,输送容量各为3200KVA。10kV进出线共6回,全部为架空线路,
12、总输送容量按3000KVA设计。2.主变选择 (1)变电站变压器台数和容量的选择原则:对于只供给二类、三类负荷的变电站,原则上只装设一台变压器。对于供电负荷较大的城市变电站或有一类负荷的重要变电站,应选用两台两台相同容量的主变压器,每台变压器的容量应满足一台变压器停运后,另一台变压器能供给全部一类负荷;在无法确定一类负荷所占比重时,每台变压器的容量可按计算负荷的70%80%选择。对大城市郊区的一次变电站,如果中、低压侧已构成环网的情况下,变电站以装设两台为宜;对地区性孤立的一次变电站,在设计时应考虑装设三台主变的可能性;对于规划只装两台主变的变电站,其变压器的基础宜按大于变压器容量的12级设计
13、。(2)变电站主变压器台数的确定:由选择原则的第2点结合待设计变电站的实际情况,为提高对用户的供电可靠性,确定该变电站选用两台相同容量的主变压器。(3)变电所主变压器容量的确定原则:按变电所建成后510年的规划负荷选择,并适当考虑1020年的负荷发展。对重要变电所,应考虑一台主要变压器停运后,其余变压器在计算过负荷能力及允许时间内,满足、类负荷的供电;对一般性变电所,一台主变压器停运后,其余变压器应能满足全部供电负荷的70%80%。(4)主变压器绕组数的确定:国内电力系统中采用的变压器按其绕组数分有双绕组普通式、三绕组式、自耦式以及低压绕组分裂式等变压器,待设计变电所有110KV、35KV、1
14、0KV三个电压等级且是一座降压变电所,宜选用双绕组普通式变压器。(5)主变压器相数的确定:在330KV及以下电力系统中,一般都应选用三相变压器。因为单相变压器组相对来说投资大、占地多、运行规模也较大,同时配电装置结构复杂,也增加了维修工作量,待设计变电所谓35KV降压变电所,在满足供电可靠性的前提下,为减少投资,故选用三项变压器。(6)主变压器调压方式的确定:为了确保变电所供电量,电压必须维持在允许范围内,通过变压器的分接头开关切换,改变变压器高压侧绕组匝数,从而改变其变比,实现电压调整。切换方式有两种:不带电切换,称为无励磁调压,调整范围通常在22.5%以内;另一种是带负荷切换,称为有载调压
15、,调整范围可达30%,但其结构较复杂,价格较贵,由于待设计变电所的负荷合均为、类重要负荷,为确保供电质量,有较大的调整范围,我们选用有载调压方式。(7)主变压器绕组连接组别的确定:变压器的连接组别必须和系统电压相位一致,否则,不能并列运行,电力系统采用的绕组连接方式只有星形和三角形两种,因此对于三相双绕组变压器的高压侧,110KV及以上电压等级,三相绕组都采用“YN”连接,35KV及以下采用“Y”连接;对于三相双绕组变压器的低压侧,三相绕组采用“d”连接,若低电压侧电压等级为380/220V,则三相绕组采用“yn”连接,在变电所中,为了限制三次谐波,我们选用“Ynd11”常规连接的变压器连接组
16、别。(8)主变压器冷却方式的选择:电力变压器的冷却方式,随其型号和容量不同而异,一般有以下几种类型:自然风冷却:一般适用于7500KVR一下小容量变压器,为使热量散发到空气中,装有片状或管型辐射式冷却器,以增大油箱冷却面积。强迫油循环水冷却:对于大容量变压器,单方面加强表面冷却还打不到预期的冷却效果。故采用潜油泵强迫油循环,让水对油管道进行冷却,把变压器中热量带走。在水源充足的条件下,采用这种冷却方式极为有利散热效率高、节省材料、减少变压器本体尺寸,但要一套水冷却系统和有关附件且对冷却器的密封性能要求较高。即使只有极微量的水渗入油中,也会严重地影响油的绝缘性能。故油压应高于水压0.10.15M
17、pa,以免水渗入油中。强迫空气冷却:又简称风冷式。容量大于等于8000KVA的变压器,在绝缘允许的油箱尺寸下,即使有辐射器的散热装置仍达不到要求时,常采用人工风冷。在辐射器管间加装数台电动风扇,用风吹冷却器,使油迅速冷却,加速热量散出,风扇的启停可以自动控制,亦可人工操作。强迫油循环导向风冷却:近年来大型变压器都采用这种冷却方式。它是利用潜油泵将冷油压入线圈之间、线饼之间和铁芯的油管中,使铁芯和绕组中的热量直接由具有一定流速的油带走,二变压器上层热油用潜油泵抽出,经过水冷却器冷却后,再由潜油泵注入变压器油箱底部,构成变压器的油循环。强迫油循环风冷却:其原理与强迫油循环水冷相同。水内冷变压器:变
18、压器绕组用空心导体制成,在运行中将纯水注入空心绕组中,借助水的不断循环将变压器中热量带走,但水系统比较复杂且变压器价格比较高。考虑到冷却系统的供电可靠性,要求及维护工作量,首选自然风冷冷却方式。所以用两台SFSZ731500/110型有载调压变压器,采用暗备用方式,查变压器的参数如下:表2-1 变压器技术数据型 号额定容量(kVA)额定电压(kV)损 耗(kW)阻抗电压(%)空载电流(%)连接组别高压中压低压空载短路SFSZ731500/110315001108*1.25%354*1.25%10.58.241U12=10.5%U13=17.5%U23=6.5%1YN、yno、dn2.2.本变电
19、站站用变压器的选择变电站的站用电是变电站的重要负荷,因此,在站用电设计时应按照运行可靠、检修和维护方便的要求,考虑变电站发展规划,妥善解决分期建设引起的问题,积极慎重地采用经过鉴定的新技术和新设备,使设计达到经济合理,技术先进,保证变电站安全,经济的运行。一般变电站装设一台站用变压器,对于枢纽变电站、装有两台以上主变压器的变电站中应装设两台容量相等的站用变压器,互为备用,如果能从变电站外引入一个可靠的低压备用电源时,也可装设一台站用变压器。根据如上规定,本变电站选用两台容量相等的站用变压器。站用变压器的容量应按站用负荷选择:S照明负荷+其余负荷*0.85(kVA)站用变压器的容量:SeS0.8
20、5P十P照明(kVA)根据任务书给出的站用负荷计算:S5.2+4.5+(20+4.5+0.15*32+2.7+15+1+4.5*2+1.5)*0.8549.725(kVA)考虑一定的站用负荷增长裕度,站用变10KV侧选择两台S98010型号配电变压器,互为备用。根据容量选择站用电变压器如下:型号:S98010;容量为:80(kVA)连接组别号:Yyn0 调压范围为:高压:5阻抗电压为(%):4所用电接线方式:一般有重要负荷的大型变电所,380220V系统采用单母线分段接线,两台所用变压器各接一段母线,正常运行情况下可分列运行,分段开关设有自动投入装置。每台所用变压器应能担负本段负荷的正常供电,
21、在另一台所用变压器故障或检修停电时,工作着的所用变压器还能担负另一段母线上的重要负荷,以保证变电所正常运行。第3章 电气主接线的选择3.1选择原则电气主接线是变电站设计的首要任务,也是构成电力系统的重要环节。主接线方案的确定与电力系统及变电站运行的可靠性、灵活性和经济性密切相关,并对电器设备选择、配电装置布置、继电保护和控制方式的拟定有较大影响。因此,主接线的设计必须正确处理好各方面的关系,全面分析论证,通过技术经济比较,确定变电站主接线的最佳方案。3.1.1主接线设计的基本要求及原则1.变电站主接线设计的基本要求:(1)可靠性供电可靠性是电力生产和分配的首要要求,电气主接线的设计必须满足这个
22、要求。因为电能的发送及使用必须在同一时间进行,所以电力系统中任何一个环节故障,都将影响到整体。供电可靠性的客观衡量标准是运行实践,评估某个主接线图的可靠性时,应充分考虑长期运行经验。我国现行设计规程中的各项规定,就是对运行实践经验的总结,设计时应该予以遵循。(2)灵活性电气主接线不但在正常运行情况下能根据调度的要求灵活的改变运行方式,达到调度的目的,而且在各种事故或设备检修时,能尽快的退出设备、切除故障,使停电时间最短、影响范围最小,并在检修设备时能保证检修人员的安全。 电气主接线应简单清晰、操作方便,尽可能使操作步骤简单,便于运行人员掌握。复杂的接线不仅不便于操作,还往往会造成运行人员的误操
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 配电 降压 变电站 设计 学位 论文
限制150内