2023年好高中数学排列组合问题常用的解题方法.pdf
《2023年好高中数学排列组合问题常用的解题方法.pdf》由会员分享,可在线阅读,更多相关《2023年好高中数学排列组合问题常用的解题方法.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、排列组合常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.例 1 五人并排站成一排,假如甲、乙必须相邻且乙在甲的右边,那么不同的排法种数有 种。分析:把甲、乙视为一人,并且乙固定在甲的右边,则本题相称于4 人的全排列,谊=2 4 种。二、相离问题插空法元素相离(即不相邻)问题,可先把无位置规定的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端.例2 七个人并排站成一行,假如甲乙两个必须不相邻,那么不同排法的种数是 o分析:除甲乙外,其余5 个 排 列 数 为 种,再用甲乙去插6 个空位有可种,不同的排法种数是反反=3 6 0 0 种
2、。三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法.例 3 A、B、C、D、E五个人并排站成一排,假如 B必须站A的右边(A、B可不相邻),那么不同的排法种数有 o分析:8在A的右边与8在A的左边排法数相同,所以题设的排法只是5 个元素全排列数的一半,即g&=60种。四、标号排位问题分步法把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完毕.例 4 将数字1、2、3、4 填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有分析:先把1填入方格中,符合条件的有3 种方法,第
3、二步把被填入方格的相应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3X3X 1=9种填法。五、有序分派问题逐分法有序分派问题是指把元素按规定提成若干组,可用逐步下量分组法。例 5 有甲、乙、丙三项任务,甲需2 人承担,乙丙各需1人承担,从 10 人中选出4 人承担这三项任务,不同的选法总数有 o分析:先从10人中选出2 人承担甲项任务,再从剩下的8 人中选1人承担乙项任务,第三步从此外的7 人 中 选 1 人承担丙项任务,不同的选法共有G:C;C;=2520 种。六、多元问题分类法元素多,取出的情况也有多种J 可按结果规定,提成不相容的几类情况分别计算,最后总
4、计。例 6 由 数 字 0,1,2,3,4,5 组成且没有反复数字的六位数,其中个位数字小于十位数字的共有 个。分析:按题意,个位数字只也许是0,1,2,3,4 共 5 种情况,分别有用个,个,合并总计 3 00 个。七、交叉问题集合法某些排列组合问题几部分之间有交集,可用集合中求元素个数公式n(AuB)=n(A)+H(B)-n(AnB)o例 9 从 6 名运动员中选出4个参与4义1 0 0m接力赛,假如甲不跑第一棒,乙不跑第四棒,共有多少种不同参赛方法?分析:设全集I=6 人中任取4 人参赛的排列,A=甲第一棒的排列,B=乙跑第四棒的排列,根据求集合元素个数的公式得参赛方法共有:n(I)n(
5、A)n(B)+n(ACB)=P;-P;P;+P:=252(种).八、定位问题优先法某个(或几个)元素要排在指定位置,可先排这个(几个)元素,再排其他元素。例 10 1 名老师和4 名获奖同学排成一排照像留念,若老师不在两端,则有不同的排法有 种。分析:老师在中间三个位置上选一个有种,4 名同学在其余4 个位置上有种方法;所 以 共 有=72种。九、多排问题单排法把元素排成几排的问题,可归结为一排考虑,再分段解决。例 11 6 个不同的元素排成前后两排,每排3 个元素,那么不同的排法种数 是 o分析:前后两排可当作一排的两段,因此本题可当作6 个不同的元素排成一排,共 父=720种。例 1 2
6、8 个不同的元素排成前后两排,每排4 个元素,其中某2 个元素要排在前排,某 1个元素要排在后排,有多少种排法?分析:当作一排,某 2 个元素在前半段四个位置中选排2 个,有A:种,某 1个元素排在后半段的四个位置中选一个有4 种,其余5个元素任排5个位置上有用种,故 共 有=5760种排法。十、“至少 问题间接法关于“至少”类型组合问题,用间接法较方便。例 1 3 从 4 台甲型和5 台乙型电视机中任取出3 台,其中至少要甲型和乙型电视机各一台,则不同取法共有 种。分析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有C;-C;=70种。分析2:至少
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高中数学 排列组合 问题 常用 解题 方法
限制150内