2023年北师大版初中数学知识点汇总.pdf
《2023年北师大版初中数学知识点汇总.pdf》由会员分享,可在线阅读,更多相关《2023年北师大版初中数学知识点汇总.pdf(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版初中数学七年级上册知识点汇总第一章丰富的图形世界0 1.柱体,圆 柱:底 面 是 圆 面,侧 面 是 曲 面棱 体:底 面 是 多 边 形 侧 面 是 正 方 形 或 长 方 形 圆 锥:底 面 是 圆 面 侧 面 是 曲 面2.锥体j 棱 锥:底 面 是 多 边 形 侧 面 都 是 三 角 形 3.球体:由球面围成的(球面是曲面)Q4.几何图形是由点、线、面构成的。几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面;面与面相交得到线;线与线相交得到点。X5.棱:在棱柱中,任何相邻两个面的交线都叫做核。派6.侧 棱:相邻两个侧面的交线叫做刎犊,所有侧棱长都相
2、等。07.棱柱的上、下底面的形状相同,侧面的形状都是长方形。0 8.根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱它们底面图形的形状分别为三边形、四边形、五边形、六边形09.长方体和正方体都是四棱柱。1 0.圆柱的表面展开图是由两个相同的圆形和一个长方形连成。11.圆锥的表面展开图是由一个圆形和一个扇形连成。X I 2.设一个多边形的边数为n(n2 3,且 n为整数),从一个顶点出发的对角线有(n-3 )条;可以把n 边形成(n-2)个三角形;这个n边 形 共 有-3)条对角线。2 1 3.圆上两点之间的部分叫做弧,弧是一条曲线。1 4.扇形,由一条弧和通过这条弧的端点的两条
3、半径所组成的图形。15 .凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。第二章有理数及其运算零(0)正分数(如:一,,5.3,3.8 ,)2 3数轴的三要素:原点、正方向、单位长度(三者缺一不可)。任何一个有理数,都可以用数轴上的一个点来表达。(反过来,不能说数轴上所有的点都表达有理数)假如两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0 的相反数是0)在数轴上,表达互为相反数的两个点,位于原点的侧,且到原点的距离相等。口数轴上两点表达的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。绝对值的定义:一个数a 的绝对值就是数轴上
4、表达数a 的点与原点的距离。数 a 的绝对值记作I a 1。正数的绝对值是它自身;负数的绝对值是它的数;0 的绝对值是0。a(a 0)al 0(。=0)-a(a 0)或 a 0)-a(a-3-?-1 0 i?3绝对值的性质:除 0 外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除 0 外)的绝对值相等;任何数的绝对值总是非负数,即 I a|20比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的环节如下:先求出两个数负数的绝对值;比较两个绝对值的大小;根 据“两个负数,绝对值大的反而小”做出对的的判断。绝对值的性质:对任何有理数a,都有|a|20 若 I a 1=0,则
5、|a|二 0,反之亦然若|a|=b,则 a=b对任何有理数a,都有|a|=|-a|有理数加法法则:同号两数相加,取相同符号,并把绝对值相加。异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。一个数同0 相加,仍得这个数。加法的互换律、结合律在有理数运算中同样合用。0灵活运用运算律,使用运算简化,通常有下列规律:互为相反的两个数,可以先相加;符号相同的数,可以先相加;分母相同的数,可以先相加;几个数相加能得到整数,可以先相加。有理数减法法则:减去一个数,等于加上这个数的相反数。0有理数减法运算时注意两“变”:改变运算符号;改变减数的性质符
6、号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有互换律。有理数的加减法混合运算的环节:写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;运用加法则,加法互换律、结合律简化计算。(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它自身的相反数。)有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0 相乘,积仍为0。I 3 5假如两个数互为倒数,则它们的乘积为1。(如:-2 与 一、2 与己等)2 5 3乘法的互换律、结合律、分派律在有理数运算中同样合用。0有理
7、数乘法运算环节:先拟定积的符号;求出各因数的绝对值的积。Q 乘积为1的两个有理数互为倒数。注意:零没有倒数求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。正数的倒数是正数,负数的倒数是负数。有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0。0不可作为除数,否则无意义。有理数的乘方,-3-axaxax.xa=n指数 底 豹嘉注意:一个数可以看作是自身的一次方,如 5=5,;当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。乘方的运算性质:正数的任何次基都是正数;负数的奇次基是负数,负数的偶次基是正数;任何数的偶数次塞都
8、是非负数;1的任何次基都得1,0的任何次嘉都得0;-1 的偶次累得1;-1 的奇次累得-1;在运算过程中,一方面要拟定幕的符号,然后再计算事的绝对值。有理数混合运算法则:先算乘方,再算乘除,最后算加减。假如有括号,先算括号里面的。第三章字母表达数代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表达数的字母连接而成的式子叫做住新如单独的一个数或一个字母也是代数式。注意:代数式中除了具有数、字母和运算符号外,还可以有括号;代数式中不具有“=、W”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;代数式中的字母所表达的数必须要使这个代数式故意义,是实际问题的要符合
9、实际问题的意义。代数式的书写格式:代数式中出现乘号,通常省略不写,如V t;数字与字母相乘时,数字应写在字母前面,如 4 a;1 7带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如2 x a 应 写 作;3 3数字与数字相乘,一般仍用“X”号,即“X”号不省略;4在代数式中出现除法运算时,一般按照分数的写法来写,如 4+(a 4)应写作 一;注意:分数a-4线 具 有“土”号和括号的双重作用。在表达和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如(/一/)平方米代数式的系数:代数式中的数字中的数字因数叫做代数式的系数。如 3 x,4 y 的
10、系数分别为3,4。注意:单个字母的系数是1,如 a的系数是1;只含字母因数的代数式的系数是1 或T,如-a b 的系数是一1。a b 的系数是1代数式的项:代数式6/一2 -7 表达6 x -2 x、-7 的和,6(、-2 x、-7 是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。注意:判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。合差同类项:把代数式中的同类项合并成一项,叫做合并
11、同类项。合并同类项的理论根据是逆用乘法分派律;合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。注意:假如两个同类项的系数互为相反数,合并同类项后结果为0;不是同类项的不能合并,不能合并的项,在每步运算中都要写上;只要不再有同类项,就是最后结果,结果还是代数式。根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“一”号去掉,括号里各项都改变符号。根据分派律去括号:括号前面是“+”号当作+1,括号前面是“一”号当作-1,根据乘法的分派律用+1或-1 去乘括号里的每一项以达成去括号的目的。注意:去括号时,要连同括号
12、前面的符号一起去掉;去括号时,一方面要弄清楚括号前是+”号 还 是 号;改变符号时,各项都变号;不改变符号时,各项都不变号。第四章平面图形及位置关系线段、射线、直线X I.对的理解直线、射线、线段的概念以及它们的区别:名称图形表达方法端点长度直线/A B直线1 3(或胡)直 线 1无端点无法度量射线0 M射线0M1个无法度量线段1A B线段力6(或为)线 段 12 个可度量长度X2.直线公理:通过两点有且只有一条直线.二.比较线段的长短X 1 .线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.X 2.比较线段长短的两种方法:圆规截取比较法;刻度尺度量比较法.X 3.用刻度尺可以
13、画出线段的中点,线段的和、差、倍、分;用圆规可以画出线段的和、差、倍.三.角的度量与表达XI.角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.X2.角的表达法:角的符号为“N”一图I K L用三个字母表达,如 图1所示/AOB 图2用一个字母表达,如图2所示/b用一个数字表达,如图3所示/I用希腊字母表达,如图4所示/B 图3 图4通过两点有且只有一条直线。两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。/外、,1。=60 r =6 0”/角也可以当作是由一条射线绕着它的端点旋转而成的。如图5所示:图5一条射线绕它的端点旋转,
14、当终边和始边成一条直线时,所成的角叫做干曲。如图6所示:-O-平 角 图6终边继续旋转,当它又和始边重合时,所成的角叫做周年。如图7所示:0-图 7从一个角的顶点引出的一条射线,把这个角提成两个相等的角,这条射线叫做这个角的平分线。通过直线外一点,有且只有一条直线与这条直线平行。假如两条直线都与第三条直线平行,那么这两条直线互相平行。互相垂直的两条直线的交点叫做事是。平面内,过一点有且只有一条直线与已知直线垂直。如图8所示,过点C作直线A B的垂线,垂足为0点,线段C0的长度叫做点C到直线A B的距离。CA-83一B 第五章 一元一次方程在一个方程中,只演有一个未知数X(元),并且未知数的指数
15、是1 (次),这样的方程叫做一元一次方程。等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。等式两边同时乘同一个数(或除以同一个不为0 的数),所得结果仍是等式。解方程的环节:解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化 为 1等几个环节,把一个一元一次方程“转化”成 X=m的形式。第六章 生活中的数据科学记数法:一般地,一个大于10的数可以表达成aX 10”的形式,其 中 1W a 10,n 是正整数,这种记数方法叫做科学记数法。记录图的特点:折线记录图:可以清楚地反映同一事物在不同时期的变化情况。条形记录图:可以清楚地反映每个项目的具体数目及之间的大小
16、关系。扇形记录图:可以清楚地表达各部分在总体中所占的比例及各部分之间的大小关系记录图对记录的作用:(1)可以清楚有效地表达数据。可以对数据进行分析。(3)可以获得许多的信息。(4)可以帮助人们作出合理的决策。七年级下册北师大版初中数学知识点总结第一章整式的运算一.整 式X I.单项式由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,假如一个单项式只是字母的积,并非没有系数.一个单项式中,所有字母的指数和叫做这个单项式的次数.X 2.多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的
17、项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.单项式和多项式都有次数,具有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不也许都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.X 3 .整式单项式和多项式统称为整式.代数单项式多项式其 他 代 数 式整式整式的加减0 1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2.括号前面是“一”号,去括号时,括号内各项要变号,一
18、个数与多项式相乘时,这个数与括号内各项都要相乘.三.同底数幕的乘法同底数基的乘法法则:产(/,都是正数)是累的运算中最基本的法则,在应用法则运算时,要注意以下几点:法则使用的前提条件是:累的底数相同并且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;指数是1时,不要误认为没有指数;不要将同底数基的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还规定指数相同才干相加;当三个或三个以上同底数基相乘时,法 则 可 推 广 为 标(其中m、n、p均为正数);公式还可以逆用:a =a 加、n均为正整数)四.幕的乘方与积的乘方XI.累的乘方法则
19、:()=a U 都是正数)是嘉的乘法法则为基础推导出来的,但两者不能混淆.文()=(a)=(九都为正数)X3.底数有负号时;运算时要注意,底数是a与(-a)时不是同底,但可以运用乘方法则化成同底,如 将(-a)化成-a一 般 地(-a)=n ).X2.在应用时需要注意以下几点:法则使用的前提条件是“同底数基相除”并且0不能做除数,所以法则中a会0.任何不等于0的数的0次累等于1 ,即“=13声),如1 0 =1,(-2.5 =1 ),则0 无意义a-p任何不等于0的数的-P次嘉(P是正整数),等于这个数的P的次塞的倒数,即(aW0,p是正整数),而0 ,0 都是无意义的;当a 0时,a 的值一
20、定是正的;当a0时,a 的值也许是正也也(-2)-2=-(-2 尸=许是负的,如 4,8运算要注意运算顺序.六.整式的乘法X I .单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里具有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:积的系数等于各因式系数积,先拟定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;相同字母相乘,运用同底数的乘法法则;只在一个单项式里具有的字母,要连同它的指数作为积的一个因式;单项式乘法法则对于三个以上的单项式相乘同样合用;单项式乘以单项式,结果仍是一个单项式。X2.单项式与多项式相乘
21、单项式乘以多项式,是通过乘法对加法的分派律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;运算时要注意积的符号,多项式的每一项都涉及它前面的符号;在混合运算时,要注意运算顺序。X3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;多项式相乘的结果应注意
22、合并同类项;对具有同一个字母的一次项系数是1 的两个一次二项式相乘(+GO+加=鹏+(a +b)x +“,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1 的两个一次二项式(mx+a)和(n x+b )相乘可以得到(mx+a)(nx+b)=mnx+(mb+ma)x+ab七.平方差公式 1.平方差公式:两数和与这两数差的积,等于它们的平方差,即 3 +)(_ 与=tr _。其结构特性是:公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;公式右边是两项的平方差,即相同项的平方与相反项的平方之差。八.完全平方公式 1.完全平方
23、公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2 倍,Q即(a Z?)2 =cr 2ab+b2.0口决:首平方,尾平方,2 倍乘积在中央;0 2.结构特性:公式左边是二项式的完全平方;公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2 倍。0 3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现(0 土份土/这样的错误。九.整式的除法0 1.单项式除法单项式单项式相除,把系数、同底数幕分别相除,作为商的因式,对于只在被除式里具有的字母,则连同它的指数作为商的一个因式:2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,
24、再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,此外还要特别注意符号。第二章 平行线与相交线一.台球桌面上的角上互为余角和互为补角的有关概念与性质假如两个角的和为9 0 (或直角),那么这两个角互为余角;假如两个角的和为1 8 0。(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,并且两个概念强调的是两个角的数量关系,与两个角的互相位置没有关系。它们的重要性质:同角或等角的余角相等;同角或等角的补角相等。二.探索直线平行的条件两条直线互相平行的条件即两条直线互相平行的鉴定定理,共有三条:同位角相等,两直线平行;内错角相
25、等,两直线平行;同旁内角互补,两直线平行。三.平行线的特性平行线的特性即平行线的性质定理,共有三条:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。四.用尺规作线段和角X 1 .关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。X 2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。第三章 生活中的数据X I.科学记数法:对任意一个正数也许写成a X 1 0 的形式,其 中 1 a 1 0,n 是整数,这种记数的方法称为科学记数法。02.运用四
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 北师大 初中 数学 知识点 汇总
限制150内