《学士学位论文--轴类零件的加工与编程数控加工.doc》由会员分享,可在线阅读,更多相关《学士学位论文--轴类零件的加工与编程数控加工.doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 轴类零件的加工与编程姓 名:唐加庆学 校:山东技师学院班 级:技师数控093 专 业:数控加工与编程目 录第1章 零件的图样分析1.1 零件的尺寸要求1.2 零件的图样分析1.2.1 零件的形状及主要加工表面的尺寸1.2.2 零件的尺寸公差分析1.2.3 零件的形位公差分析1.2.4 零件表面粗糙度分析1.2.5 零件的设计基准第2章 毛坯的选择2.1 毛坯种类确定2.2 材料的选择2.3 毛坯尺寸及形状选择第3章 机床的选择3.1 数控车床的选择3.2 数控铣床的选择3.3 线切割机第4章 确定定位基准4.1 定位基准4.2 精基准与粗基准的选择原则4.3 基准的确定择第5章 确定装夹方案
2、5.1 夹具的选5.2 装夹方案第6章 量具、刀具的选择6.1 量具的选择6.2 刀具的选择6.2.1 刀具选择原则6.2.2 数控加工刀具的要求6.2.3 刀具的材料6.2.4 刀具的几何角度的选择第7章 加工工艺路线的确定7.1 加工方案的选择7.2 工序的安排及确定7.3 工序的划分7.4 加工路线的确定7.5 工序加工余量的确定第8章 切削用量的确定8.1 车削切削用量的确定8.2 铣削切削用量的确定8.2.1 铣削用量8.2.2 切削用量的选择原则8.2.3 切削用量的确定第9章 典型轴类的加工9.1 轴类零件加工工艺分析9.2 典型轴类零件加工工艺 9.3 加工坐标系的设置 9.4
3、 手工编程第III页绪 论第1章 零件的图样分析1.1 零件的尺寸要求该零件是半轴器,为典型的轴类零件,尺寸要求如图1-1所示:图1-1 技术要求:1.去毛刺倒角,未注倒角1452.热处理正火H1802003.凹台两侧面高频淬火,HRC4550,层深1.52mm1.2 零件的图样分析1.2.1 零件的形状及主要加工表面的尺寸该零件由外圆、内孔、凹槽和键槽四部分组成,零件的外形尺寸为7042mm,外圆尺寸为7012mm和3230mm,内孔为18的通孔,键槽宽度为8mm,宽10mm深8mm的凹槽。倒角分别有245、R3和R0.5,其他倒角均145。1.2.2 零件的尺寸公差分析根据图1-1可知该零
4、件的尺寸公差,凹槽宽度10mm上偏差为+0.023,下偏差为-0.018,深度8mm上偏差为+0.1,下偏差为0,宽8mm的键槽公差为0.1。未注尺寸公差的线性尺寸和角度尺寸可按GB/T1804-2000查表,长30mm的公差为0.15,长12mm的公差为0.1,R3的公差为0.2,高20mm的公差为0.1。轴孔的极限偏差可按GB/T1800.4-1999查得,70、32的外圆公差为0.1,18的通孔公差为0.1。1.2.3 零件的形位公差分析零件的形位公差:该半轴器以A为基准,凹槽相对于基准A的对称度为0.025,平行度为0.025,左端面相对于基准A的圆跳度为0.025。1.2.4 零件表
5、面粗糙度分析表面粗糙度是保证零件表面微观精度的重要要求,也是合理选择数控车床、刀具及确定切削用量的依据。从零件图样可知:键槽侧面、凹槽侧面和左端面的表面粗糙度为Ra3.2um,孔的表面粗糙度为Ra1.6um,零件其他部位的表面粗糙度都为Ra6.3um。1.2.5 零件的设计基准该零件18内孔中心线是各外圆设计基准,也是圆柱面的跳动误差的设计基准,还是键槽平行度和对称的的设计基准。第2章 毛坯的选择2.1 毛坯种类确定常用的毛坯种类有铸件、锻件、压制件、冲压件、焊接件、型材和板材等。(1)铸件:适用于形状复杂的毛坯,薄壁零件不可用砂型铸造,尺寸大的铸件宜用砂型铸造,中、小型零件可用较先进的铸造方
6、法。铸件材料有铸铁、铸钢及铜、铝等有色金属。(2)锻件:适用于零件强度较高、形状较简单的零件。(3)型材:型材有热轧和冷轧两种。热轧型材的尺寸较大,精度低,多用作一般零件的毛坯;冷轧型材尺寸较小,精度较高,多用于毛坯精度要求较高的中、小零件,适用于自动机床加工。(4)焊接件:是根据需要将型材或钢板等焊接而成的毛坯件,对于大件来说,焊接件简单、方便,但焊接后变形大,需经时效处理。(5)冷冲压件:可以非常接近成品要求,在小型机械、仪表、轻工电子产品方面应用广泛。但因冲压模具昂贵仅用于大批大量生产。适用于形状复杂的板料零件,多用于中、小尺寸零件的大批量生产。由于半轴器为轴类零件,尺寸较小,我们可以选
7、用型材中的型材作为毛坯。2.2 材料的选择选用材料的原则:在满足零件功能的前提下,应选用廉价、切削性能好的材料;而且不要轻易选用贵重和紧缺的材料。45钢属于中碳钢,是优质碳素结构钢,它的强度是61,HRC(洛氏硬度)4855,含碳量0.420.52%,含硅量0.170.37%,含锰量0.500.80%,含铬量0.25%。45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,该零件是用于配合件中的零件,所以要求该零件的材料具有一定的硬度、强度和韧性,因此选用45钢作为毛坯材料。2.3 毛坯尺寸及形状选择选择毛坯形状和尺寸总的要
8、求是:减少“肥头大耳”,实现少屑或无屑加工。毛坯形状要力求接近成品形状,减少机械加工的劳动量。在采用数控加工时其加工表面应有较充分的余量,根据图纸所规定的尺寸,毛坯尺寸选8050mm最佳。综上所述:半轴器的毛坯为8050mm的45钢型材。如图2-1示:图2-1第3章 机床的选择从零件图看来,加工此零件外圆,内孔可用数控车床完成。加工凹槽和键槽需要用数控铣床或线切割机完成。在选择机床时主要考虑以下因素:(1)机床规格应与工件的外形尺寸相适应,即大件用大机床,小件用小机床。(2)机床精度应与工件加工精度要求相适应。机床精度过低,不能保证加工精度;机床精度过高,又会增加工件的制造成本,应根据工件的精
9、度要求合理选择。(3)机床的生产效率应与工件的生产类型相适应。单件小批生产用通用设备或数控机床,大批大量生产应选高效专用设备。(4)与现有的条件相适应。要根据现有设备及设备负荷状况、外协条件等确定机床,避免“闭门造车”。3.1 数控车床的选择数控车床是主要用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。卡盘式数控车床,这类车床没有尾座,适合车削盘类(含短轴类)零件。卧式数控车床又分为数控水平导轨卧式车床和数控倾斜导轨卧式车床。其倾斜导轨结构
10、可以使车床具有更大的刚性,并易于排除切屑。夹紧方式多为电动或液动控制,卡盘结构多具有可调卡爪或不淬火卡爪(即软卡爪)。根据该零件图样可知,该半轴器尺寸较小,选用CK6140进行外圆及内孔的加工。其主要参数如下:车床上的最大回转直径:400mm最大车削直径:240mm最大工件长度:1000mm主轴转速:36-2000 r/min套筒直径: 55mm套筒行程(手动): 120mm刀位数:4 X向行程: 200mmZ向行程:800mm3.2 数控铣床的选择铣床主要分为普通数控铣床和加工中心。普通数控铣床中最典型的是立式数控铣床。主轴带动刀具旋转,主轴箱可上下移动,工作台可沿横向和纵向移动。具有三轴联
11、动的功能,用于各类复杂的平面、曲面和壳体类零件的加工,如各种模具、样板、凸轮和连杆等。该零件在铣床上加工的结构相对简单(宽10深8的凹槽),可以直接选用KV650(FANUC Oi系列)型立式数控铣床进行加工。,其主要参数如下:工作台面积:4051370mm;工作台纵向行程:650mm;工作台横向行程:450mm;主轴箱垂直向行程:500mm;转速范围:60-6000r/min;进给速度:5-8000mm/min;快速移动速度:10000mm/min。3.3 线切割机线切割机用于加工金属等导电材料,半轴器的材料为45钢,满足其要求。键槽的倒角为直角,线切割机可以满足其形状的要求,而键槽的侧边表
12、面粗糙度要求不高(Ra3.2),线切割机可以满足。综上所述,可以选用线切割机加工半轴器的键槽。通过以上分析,可知加工半轴器的外圆及内孔时,选用CK6140数控机床,加工凹槽时,选用KV650(FANUC Oi系列)型立式数控铣床,加工键槽时,选用线切割机进行加工。第4章 确定定位基准4.1 定位基准在制订工艺规程时,定位基准选择的正确与否,对能否保证零件的尺寸精度和相互位置精度要求,以及对零件各表面间的加工顺序安排都有很大影响,当用夹具安装工件时,定位基准的选择还会影响到夹具结构的复杂程度。因此,定位基准的选择是一个很重要的工艺问题。基准是零件上用来确定其他点、线、面位置所依据的那些点、线、面
13、。按其功用不同,基准可分为设计基准和工艺基准两大类。1)设计基准设计基准是在零件图上所采用的基准。它是标注设计尺寸的起点。2)工艺基准工艺基准是在工艺过程中所使用的基准。工艺过程是一个复杂的过程,按用途不同工艺基准又可分为定位基准、工序基准、测量基准和装配基准。4.2 精基准与粗基准的选择原则选择定位基准时,是从保证工件加工精度要求出发的,因此,定位基准的选择应先选择精基准,再选择粗基准。选择精基准时,主要考虑保证加工精度和工件安装方便可靠,其选择原则如下:(1)基准重合原则(2)基准统一原则(3)自为基准原则(4)互为基准原则(5)便于装夹原则选择粗基准时,主要要求保证各加工面又足够的余量,
14、使加工面与不加工面的位置符合图样要求,并特别注意要尽快获得精基面,具体选择时应考虑下列原则:(1)选择重要表面为粗基准。(2)选择不加工表面为粗基准。(3)选择加工余量最小的表面为粗基准。(4)选择较为平整光洁、加工面积较大的表面为粗基准。(5)粗基准在同一尺寸方向上只能使用一次。半轴器的精基准可选用零件图的设计基准,即该零件的中心轴线,而粗基也则可选用该零件的中心轴线。4.3 基准的确定车3230mm的外圆,根据基准统一原则选择中心轴线为定位基准。钻中心孔A3所需要的定位基准为外表面与中心轴线。钻16mm的通孔,根据基准统一原则选择中心轴线为定位基准。镗孔,孔为18mm的通孔,根据基准统一原
15、则选择中心轴线为定位基准。车7012mm的外圆,根据基准统一原则选择中心轴线为定位基准。铣宽10mm深8mm的凹槽,根据基准统一原则选择中心轴线为定位基准。加工宽8mm的键槽,根据基准统一原则选择中心轴线为定位基准。第5章 确定装夹方案5.1 夹具的选择为保证加工精度,在数控机床上加工零件时,必须先使工件在机床上占据一个正确的位置,即定位,然后将其夹紧。这种定位与夹紧的过程称为工件的装夹。用于装夹工件的工艺装备就是机床夹具。车床主要用于加工内外圆柱面、圆锥面、回转成形面、螺纹及端平面等。上述各表面都是绕车床主轴轴心的旋转而形成的,根据这一加工特点和夹具在车床上安装的位置,将车床夹具分为两种基本
16、类型:一类是安装在车床主轴上的夹具,这类夹具和车床主轴相连接并带动工件一起随主轴旋转,除了三爪自定心卡盘、四爪单动卡盘、顶尖等通用夹具或其他机床附件外,往往根据加工的需要设计出各种心轴或其他专用夹具;另一类是安装在滑板或床身上的夹具。(1)三爪自定心卡盘是车床上最常用的自定心夹具。它夹持工件一般不需要找正,装夹速度较快,是一种常用的自动定心夹具,装夹方便,应用较广,但它夹紧力较小,不便于夹持外形不规则的工件,一般适用于装夹轴类、盘套类零件。(2)四爪单动卡盘其四个爪都可单独移动,安装工件时需找正,夹紧力大,适用于外形不规则、非圆柱体、偏心、有孔距要求(孔距不能太大)及位置与尺寸精度要求高的零件
17、。(3)花盘与其他车床附件一起使用,适用于外形不规则、偏心及需要端面定位夹紧的工件。(4)心轴常用心轴有圆柱心轴、圆锥心轴和共花键心轴。圆柱心轴主要用于套筒和盘类零件的装夹;圆锥心轴(小锥度心轴)的定心精度高,但工件的轴向位移误差加大,多用于以孔为定位基准的工件;花键心轴用于以花键定位的工件。由于三爪自定心卡盘夹持工件一般不需要找正,装夹速度较快,是一种常用的自动定心夹具,可用于装夹轴类、盘套类零件。而半轴器是一个典型的轴类零件,因此在加工外圆及内孔时,可采用三爪自定心卡盘进行装夹。铣床通常使用的是平口钳进行夹紧定位,但该零件是典型的轴类零件,使用平口钳不能准确的进行装夹定位和对刀,对加工的精
18、度有所影响,所以选用三爪卡盘对其进行定位夹紧。线切割机一般采用压板和平口虎钳对零件进行装夹定位,由于该零件为轴类零件,用平口虎钳进行装夹不能准确的定位装夹,而压板可以将该工件压紧,限制工件的自由度,所以使用压板对其进行装夹定位。5.2 装夹方案在数控车床上加工外圆及内孔是采用三爪自定心卡盘进行装夹,夹持毛坯的左端,以左端圆柱面定位装夹,如图5-1,加工3230mm的外圆和18的内孔。图5-1掉头装夹,夹持已加工的3230mm的外圆,如图5-2,加工7012mm的外圆。图5-2在数控铣床上加工凹槽时,如图5-3,同样采用三爪卡盘进行装夹,夹持工件的小端(3230mm)进行加工凹槽。图5-3在线切
19、割机上加工键槽时,如图5-4,采用压板对其进行装夹定位。图5-4第6章 量具、刀具的选择6.1 量具的选择数控加工主要用于单件小批生产,一般采用通用量具,如游标卡尺、百分表等。对于成批生产和大批大量生产中部分数控工序,应采用各种量规和一些高生产率的专用检具与量仪等。量具精度必须与加工精度相适应。由图1-1可知:测量零件总长、凹槽宽度及键槽宽度时需用游标卡尺规格为0150mm,测量外圆直径时需用外径游标卡尺规格为0150mm,测量内孔直径时需用内径游标卡尺规格为0150mm。各处的倒角需用万能角度尺测量。6.2 刀具的选择6.2.1 刀具选择原则选择刀具应根据机床的加工能力、工件材料的性能、加工
20、工序、切削用量以及其他相关因素正确选用刀具及刀柄。刀具选择总的原则是:适用、安全、经济。选择刀具时还要考虑安装调整方便、刚性伸长度尽可能好、耐用度和精度高等因素。在满足加工要求的前提下,使刀具的悬出长度尽可能短,以提高刀具系统刚性。6.2.2 数控加工刀具的要求与普通机床相比,数控加工时对刀具提出了更高的要求,不仅要求刚性好、精度高,而且要求尺寸稳定、耐用度高、断屑和排屑性能好,同时要求安装调整方便,满足数控机床的高效率。6.2.3 刀具的材料数控机床刀具从制造所采用的材料上可以分为:高速钢刀具、硬质合金刀具、陶瓷刀具,立方氮化刀具,聚晶金刚石刀具。目前数控机床用得最普遍的刀具是硬质合金刀具。
21、硬质合金刀片切削性能优异,在数控车削中被广泛使用。高速钢通常是型坯材料,韧性较硬质合金好,硬度、耐磨性和红硬性较硬质合金差,不适于切削硬度较高的材料,也不适于进行高速切削。所以在加工零件外圆、镗孔、凹槽及键槽选用硬质合金刀片,在钻孔时选用高速钢进行切削。6.2.4 刀具的几何角度的选择根据机械切削工艺参数速查手册车刀的几何参数可知,对于毛坯为45钢来讲,硬质合金车刀的前角应在1015,后角在68。由于车削的是阶梯轴,因此主偏角应在9093之间。副偏角的选择取决于粗、精车加工,粗车时选用副偏角在1015之间,精车时选用510之间的。刃倾角的选择取决于毛坯材料和粗精车加工,毛坯件为45钢,粗车时刃
22、倾角在0-5,精车时刃倾角在05。倒棱角及倒棱宽度由刀具材料决定,硬质合金钢的倒棱角为05,倒棱宽度为(0.81.0)f。根据机械切削工艺参数速查手册铣刀的几何参数可知,对于刀具为硬质合金钢,材料为45钢来说,可选用前角+5,后角17,副后角6,过渡刃后角17,螺旋角2240,副偏角34的立铣刀。表6-1刀具卡产品名称或代号十字滑块联轴器零件名称半轴器零件图号01序号刀具号刀具规格名称数量加工表面备注1T0190外圆车刀1粗精车外圆及端面硬质合金2T02A3中心钻1打中心孔高速钢3T0316钻头1钻通孔高速钢4T04镗孔刀1精镗内孔硬质合金5T056立铣刀1铣键凹槽硬质合金编制周乐媛审核鲁淑叶
23、2010年11月18日共1页第1页第7章 加工工艺路线的确定7.1 加工方案的选择当零件的加工质量要求较高时,往往不可能用一道工序来满足其要求,而要用几道工序逐步达到所要求的加工质量。为保证加工质量和合理地使用设备、人力,零件的加工过程通常按工序性质不同,可分为粗加工、半精加工、精加工和光整加工四个阶段。(1)粗加工阶段 其任务是切除毛坯上大部分多余的金属,使毛坯在形状和尺寸上接近零件成品,因此,其主要目标是提高生产率。(2)半精加工阶段 其任务是使主要表面达到一定的精度,留有一定的精加工余量,为主要表面的精加工做好准备。并可完成一些次要表面加工。(3)精加工阶段 其任务是保证各主要表面达到规
24、定的尺寸精度和表面粗糙要求。主要目标是全面保证加工质量。划分加工阶段的目的在于以下几个方面:保证加工质量、合理使用设备、便于及时发现毛坯缺陷、便于安排热处理工序。由图可知零件图对加工精度和表面粗糙度的要求,可根据表7-1,选择加工的方案。表7-1加工方法加工精度表面粗糙度粗车IT1013Ra1080um粗车、半精车IT811Ra2.512.5um粗车、半精车、精车IT79Ra1.255um钻孔IT1013Ra580um钻孔、半精镗IT11、JT12Ra2.510um钻孔、半精镗、精镗IT79Ra0.635um粗铣IT1113Ra520um粗铣、半精铣IT811Ra2.510um粗铣、半精铣、精
25、铣IT68Ra0.635um由表可知:加工70mm、32mm外圆选用粗车半精车精车加工17mm内孔时选用钻半精镗精镗铣凹槽时选用粗铣半精铣精铣的方式进行加工。7.2 工序的安排及确定1.切削加工工序通常按以下原则安排顺序:基面先行、先粗后精、先主后次、先面后孔。2.辅助工序主要包括:检验、清洗、去毛刺、去磁、倒棱边、涂防锈油和平衡等。3.数控工序前后一般都穿插有其他普通工序,如衔接不好就容易产生矛盾,因此要解决好数控工序与非数控工序之间的衔接问题。在数控机床加工过程中,由于加工对象复杂多样,特别是轮廓曲线的形状及位置千变万化,加上材料不同、批量不同等多方面因素的影响,在对具体零件制定加工顺序时
26、,应该进行具体分析和区别对待,灵活处理。只有这样,才能使所制定的加工顺序合理,从而达到质量优、效率高和成本低的目的。半轴器遵循基面先行、先粗后精、先主后次、先面后孔的基本原则进行加工。7.3 工序的划分工序的划分可以采用两种不同原则,即工序集中原则和工序分散原则。工序集中原则是指每道工序包括尽可能多的加工内容,从而使工序的总数减少。在数控机床上加工的零件,一般按工序集中原则划分工序,划分方法如下:(1)按所用刀具划分 以同一把刀具完成的那一部分工艺过程为一道工序,这种方法适用于工件的待加工表面较多、机床连续工作时间过长、加工程序的编制和检查难度较大等情况。加工中心常用这种方法划分。(2)按安装
27、次数划分 以一次安装完成的那一部分工艺为一道工序。这种方法适用于工件的加工内容不多的工件,加工完成后就能达到待检状态。(3)按粗、精加工划分 即粗加工中完成的那一部分工艺过程为一道工序,精加工中完成的那一部分工艺过程为一道工序。这种划分方法适用于加工后变形较大,需粗、精加工分开的零件,如毛坯为铸件、焊接件或锻件。(4)按加工部位划分 即以完成相同型面的那一部分工艺过程为一道工序,对于加工表面多而复杂的零件,可按其结构特点划分成多道工序。工序分散原则就是将工件的加工分散在较多的工序内进行,每道工序的加工内容很少。该半轴器的工序按照工序集中原则划分,由于加工的尺寸较少,可选用按安装次数进行划分。即
28、:(1)夹持毛坯一端,加工3230mm外圆和加工18mm通孔为第一道工序。(2)夹持工件小端3230mm外圆,加工7012mm的外圆为第二道工序。(3)夹持工件小端3230mm外圆,加工宽10mm深8mm凹槽为第三道工序。(4)加持工件3230mm外圆小端,加工宽8mm键槽为第四道工序。(5)对工件进行热处理为第五道工序。7.4 加工路线的确定加工路线的确定首先必须保持被加工零件的尺寸精度和表面质量,其次考虑数值计算简单、走刀路线尽量短、效率较高等。因精加工的进给路线基本上都是沿其零件轮廓顺序进行的,因此确定进给路线的工作重点是确定粗加工及空行程的进给路线。(1)加工路线与加工余量的关系;(2
29、)刀具的切入、切出;(3)确定最短的空行程路线;(4)确定最短的切削进给路线。加工方案:1.下料7545mm的圆棒料。2.夹持毛坯一端,车端面,加工3230mm的外圆,钻孔(16的钻头),镗孔(孔尺寸为18mm)。3.掉头夹持32mm的外圆,加工7012mm的外圆。4.铣销宽10mm深8mm凹槽5.用线切割加工8mm键槽。6.去毛刺,锐边倒钝,检验。7.对零件进行热处理。7.5 工序加工余量的确定确定加工余量的方法有三种:查表修正法、经验估计法及分析计算法。在确定加工余量时,总加工余量和工序加工余量要分别确定。由分析计算法可知:1.粗车端面加工余量0.8mm,精车端面加工余量0.2mm。总加工
30、余量1mm。2.粗车3230mm的外圆,加工余量21mm,精车外圆3230mm的外圆,加工余量0.5mm。总加工余量21.5mm。3.钻孔(16钻头),精镗18mm的通孔,加工余量2mm。4.掉头,粗车端面加工余量6.8mm,精车端面加工余量0.2mm,总加工余量7mm。5.粗车7012mm的外圆,加工余量2mm,精车外圆7012mm的外圆,加工余量0.5mm。总加工余量2.5mm。6.粗铣宽10mm深8mm凹槽,加工余量7.5mm,精铣10mm深8mm凹槽,加工余量0.5mm。总加工余量8mm。7.用线切割加工宽8mm的键槽,总加工余量2mm。第8章 切削用量的确定8.1 车削切削用量的确定
31、 切削用量(ap、f、v)选择是否合理,对于能否充分发挥机床潜力与刀具切削性能,实现优质、高产、低成本和安全操作具有很重要的作用。对于切削用量的选择有一个总的原则:首先选择尽量大的背吃刀量,其次选择最大的进给量,最后是选择最大的切削速度。即粗车时,中等或较慢的切削速度,背吃刀量要大,可使走刀次数减少,增大进给量有利于断屑。精车时,加工精度和表面粗糙度要求较高,加工余量不大且较均匀,因此选择精车切削用量时,应着重考虑如何保证加工质量,并在此基础上尽量提高生产率。即精车时应选用较小(但不能太小)的背吃刀量,选择合理的进给量,较高的转速,并选用切削性能高的刀具材料和合理的几何参数,以尽可能提高切削速
32、度。当然,切削用量的选择还要考虑各种因素,最后才能得出一种比较合理的最终方案。(1)背吃刀量的选择背吃刀量的选择根据加工余量确定。切削加工一般分为粗加工、半精加工、精加工几道工序,各工序有不同的选择方法。粗加工时(表面粗糙度Ra5012.5um),在允许的条件下,尽量一次切除工序的全部余量。中等功率机床,背吃刀量可达810mm。但对于加工余量大,一次走刀会造成机床功率或刀具强度不够,或加工余量不均匀引起振动,或刀具受冲击严重出现打刀等情况,则需要采用多次走刀。如分两次走刀,则第一次背吃刀量尽量取大,一般为加工余量的2/33/4左右;第二次背吃刀量尽量取小些,可取加工余量的1/31/4左右。半精
33、加工时(表面粗糙度Ra6.33.2um),背吃刀量一般为0.52mm。精加工时(表面粗糙度Ra1.60.8um),背吃刀量一般为0.10.4mm。考虑到机床的性能和刀具的强度,加工时的被吃刀量应尽量取小些。这样对机床和刀具有一定的保护作用。根据上述被吃刀量的选择及实际机床、刀具的使用情况。车削被吃刀量的选择如下:粗车端面时每刀背吃刀量为0.8mm精车端面时每刀背吃刀量为0.2mm粗车外圆时每刀背吃刀量为2mm精车外圆时每刀背吃刀量为0.5mm镗孔时每刀背吃刀量为0.5mm(2)进给量的选择粗加工时,选择进给量主要考虑工艺系统所能承受的最大进给量,如机床进给机构的强度、刀具强度与刚度、工件的装夹
34、刚度等。精加工和半精加工时,选择最大进给量主要考虑加工精度和表面粗糙度。另外还要考虑工件材料、刀尖圆弧半径和切削速度等。当刀尖圆弧半径增大、切削速度提高时,可以选择较大的进给量。在实际生产中,进给量常根据经验选取。粗加工时,根据工件材料、车刀刀杆直径、工件直径和背吃刀量按表8-1数据进行选取。表8-1硬质合金车刀粗加工的进给量参考值工件材料车刀刀杆尺寸mm工件直径mm背吃刀量 a/mm33-55-88-1212进给量 mm/r碳素结构钢、合金结构钢、耐热钢1625200.3-0.4_400.4-0.50.3-0.4_600.6-0.70.4-0.60.3-0.5_1000.8-1.00.5-0
35、.70.5-0.60.4-0.5_4001.2-1.40.7-1.00.6-0.80.5-0.6_20302525200.3-0.4_400.4-0.50.3-0.4_600.6-0.70.5-0.70.4-0.6_1000.8-1.00.7-0.90.5-0.70.5-0.7_4001.2-1.41.0-1.20.8-1.00.6-0.90.4-0.6精加工和半精加工时,可根据表面粗糙度要求选取,同时考虑切削速度和刀尖圆弧半径因素,查表8-2:表8-2按表面粗糙度选择进给量的参考值工件材料表面粗糙度um切削速度范围m/min刀尖圆弧半径r/mm0.51.02.0进给量mm/r铸铁、青铜、铝合
36、金Ra6.3不限0.25-0.400.40-0.500.50-0.60Ra3.20.15-0.250.25-0.400.40-0.60Ra1.60.10-0.150.15-0.200.20-0.35碳钢及合 金钢Ra6.3500.40-0.550.55-0.650.65-0.70Ra3.2500.25-0.300.30-0.350.35-0.50Ra1.61000.16-0.200.20-0-250.25-0.35根据表8-1和表8-2可知:粗车端面的进给量为0.7mm/r,精车端面的进给量为0.25mm/r。粗车外圆32mm至33mm的进给量为0.5mm/r,精车外圆32mm的进给量为0.3
37、mm/r。粗车外圆70mm至71mm的进给量为0.7mm/r,精车外圆70mm的进给量为0.5mm/r。镗孔18mm的进给量为0.1mm/r。(3)切削速度及主轴转速确定根据毛坯材料、被吃刀量、刀具材料、进给量、机床的性能,确定切削速度。即:精车端面切削速度为150m/min,粗车外圆32的切削速度为150m/min,精车外圆32mm的切削速度为100m/min,粗车外圆70的切削速度为150m/min,精车外圆70mm的切削速度为120m/min,精镗18mm通孔的切削速度为150m/min。确定切削速度之后可以根据公式: Vc=Dn/1000式中 Vc切削速度(m/min)D工件直径或刀具
38、直径(mm)n主轴转速(r/min)计算出主轴转速。精车端面切削速度为150m/min,主轴转速为600r/min粗车外圆7012mm至71mm的切削速度为150m/min,主轴转速为700r/min粗车外圆3230mm至33mm的切削速度为150m/min,主轴转速为1500r/min精车外圆70mm12mm的切削速度为120m/min,主轴转速为600r/min精车外圆32mm30mm的切削速度为100m/min,主轴转速为1000r/min精镗18mm孔的切削速度为150m/min。,主轴转速为2600r/min8.2 铣削切削用量的确定8.2.1 铣削用量切削用量是表示主运动及进给运动
39、参数量,是切削速度Vc、进给量f、和背吃刀量ap的总称。在金属切削加工过程中,需要根据不同的工件材料、刀具材料和其他技术要求来选择合适的切削速度Vc、进给量f、背吃刀量ap,它是调整机床,计算切削力、切削功率和工时定额的重要参数。(1)铣削速度Vc 切削刃选定点相对于工件的主运动的瞬时速度,单位为mm/s。(2)进给量f 铣刀于工件在进给方向上的相对位移量。它的表示方法有三种:1.每齿进给量af 是铣刀每转一个刀齿时,工件与铣刀沿进给方向的相对位移量,mmz。2.每转进给量f 是铣刀每转一转时,工件与铣刀沿进给方向的相对位移,mmr。3.进给速度vf 是单位时间内工件与铣刀沿进给方向的相对位移
40、,mmmin。(3)背吃刀量ap(切削深度) 它是在与主运动和进给运动方向相垂直的方向上测量的已加工表面与待加工表面之间的距离,单位为mm。8.2.2 切削用量的选择原则切削用量包括主轴转速、背吃刀量及进给速度等。对于不同的加工方法,需要选用不同的切削用量。切削用量的选择原则是:保证零件加工精度和表面粗糙度,充分发挥刀具切削性能,保证合理的刀具耐用度;并充分发挥机床的性能,最大限度提高生产率,降低成本。8.2.3 切削用量的确定根据铣刀的类型、直径、铣削宽度确定进给量,查表8-3:表8-3铣刀类型铣刀直径d/mm铣削宽度mm135812每齿进给量mm/z带整体刀头的立铣刀10121416182
41、20.030.0250.060.040.080.050.040.030.060.040.040.03镶螺旋行刀片的立式铣刀2025304050600.120.070.180.100.200.100.100.050.120.080.160.100.100.030.100.060.120.030.080.050.100.050.120.06根据表8-3可知:进给量f在0.030.025mm/z之间。硬质合金立铣刀加工凹槽时的进给量0.030.025mm/z,被吃刀量在0.5mm左右。铣削的切削速度可查铣削速度推荐范围表8-4:表8-4加工材料硬度(HBS)铣削速度vc(m/min)硬质合金刀具高速
42、钢刀具低、中碳钢22022529030042560150551153575204015351015由表8-4可知:45钢的铣削速度在60150m/min之间。根据公式:vc=dn/1000则可计算出其转速的大小。铣削凹槽的铣削速度选为60m/min,刀具直径为6mm,则主轴转速为3000r/min。第9章 典型轴类零件的加工9.1 轴类零件加工工艺分析(1) 技术要求 轴类零件的技术要求主要是支承轴颈和配合轴颈的径向尺寸精度和形位精度,轴向一般要求不高。轴颈的直径公差等级通常为IT6-IT8,几何形状精度主要是圆度和圆柱度,一般要求限制在直径公差范围之内。相互位置精度主要是同轴度和圆跳动;保证
43、配合轴颈对于支承轴颈的同轴度,是轴类零件位置精度的普遍要求之一。图为特殊零件,径向和轴向公差和表面精度要求较高。 (2)毛坯选择 轴类零件除光滑轴和直径相差不大的阶梯轴采用热轧或冷拉圆棒料外,一般采用锻件;发动机曲轴等一类轴件采用球墨铸铁铸件比较多。如图典型轴类直径相差不大,采用直径为60mm,材料45#钢,在锯床上按150mm长度下料。(3)定位基准选择 轴类零件外圆表面、内孔、螺纹等表面的同轴度,以及端面对轴中心线的垂直度是其相互位置精度的主要项目,而这些表面的设计基准一般都是轴中心线。用两中心孔定位符合基准重合原则,并且能够最大限度地在一次装夹中加工出多格外圆表面和端面,因此常用中心孔作为轴加工的定位基准。当不能采用中心孔时或粗加工是为了提高工作装夹刚性,可采用轴的外圆表面作定位基准,或是以外圆表面和中心孔共同作为定位基准,能承受较大的切削力,但重复定位精度并不太高。 数控车削时,为了能用同一程序重复加工和工件调头加工轴向尺寸的准确性,或为了端面余量均匀,工件轴向需要定位。采用中心孔定位时,中心孔尺寸及两端中心孔间的距离要保持一致。以外圆定位时,则应采用三爪自定心卡盘反爪装夹或采用限未支承,以工件端面或台阶儿面作为轴向定位基准。(4)轴类零件的预备加工 车削之前常需要根据情况安排预备加工,内容通
限制150内