大学物理第五版马文蔚课后答案上.pdf
《大学物理第五版马文蔚课后答案上.pdf》由会员分享,可在线阅读,更多相关《大学物理第五版马文蔚课后答案上.pdf(131页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1-1分析与解(1)质点在/至(/+用时间内沿曲线从尸点运动到尸氯各量关系如图所示,其中路程As=P P,位移大小|Ar|=P P,而2 =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当AA O时,点尸无限趋近成,则有|dr|=ds,但却不等于d/.故选(B).A r Av 由 于|故H,即|也|*V t AZ但由于|dr|=ds,故/d/=,B|1 v =v .由此可见,应选(C).d/1-2分析与解 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号裱示,dz这是速度矢量在位矢方向上的一个
2、分量;上表示速度矢量;在自然坐标系中速度大小可用公式半计算,在直d t d/角坐标系中则可由公式。=求 解.故选(D).1-3分析 与 解 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,d td r de起改变速度大小的作用;一在极坐标系中表示径向速率以如题1-2所述);在自然坐标系中表示质点的速率/;d/d t而空表示加速度的大小而不是切向加速度at.因此只有(3)式表达是正确的.故选(D).dr1 4分析与解 加速度的切向分量四起改变速度大小的作用,而法向分量4起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断
3、改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时,a t恒为零;质点作匀变速率圆周运动盹a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5分析与解 本题关键是先求得小船速度表达式,进而判断运动性质为此建立如图所示坐标系,设定滑轮距水面高度为时刻定滑轮距小船的绳长为/贝叼、船的运动方程为X=J/?一2,其中绳长/随时间f而变化.小船速度 =包=,”,式中更表示绳长/随时间的变化率,其大小即为由,代入整理后为U=丁 ,dr y j p-h1 山 V/2-/2/cos。方向沿x轴负向.由速度表达式,
4、可判断小船作变加速运动.故选(C).1-6分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t时间内的位移的大小可直接由运动方程得到:Ar=为-X y而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需 根 据 虫=0来确定其运动方向改变的时刻内,求出0%和。内色位移大小AM、*,贝女时间内的路程5=|加:|+|加,如图所示,至于/=4,0 s时质点速度和加速度可用 和 U 两式计算.出解(1)质点在4.0 s内位移的大小 A r=x4 x0=-32 mdr(2)由 =0 得知质点的换向时
5、刻为 r=2 s (/=0不合题意)drp贝!Axj=x2-x0=8.0 m,Ax2=xA-x2=-40 m所以,质点在4.0 s时间间隔内的路程为s=+|Ax2|=48m(3)f=4.0 s时,o=史 =-48 m-s-1_ d2x _ d4.os _2,a=-36 m.sd厂 /=4,0s1-7分析 根据加速度的定义可知,在直线运动中IA曲线的斜率为加速度的大小(图中AB、C D 段斜率为定值,即匀变速直线运动;而线段B C 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a f 图上是平行于f 轴的直线,由图中求出各段的斜率,即可作出a/图 线.又由速度的定义可知,*f 曲线的
6、斜率为速度的大小.因此,匀速直线运动所对应的X-/图应是一直线,而匀变速直线运动所对应的;F/图为,的二次曲线.根据各段时间内的运动方程=对,求出不同时刻/的位置X,采用描数据点的方法,可 作 出 回 图.解 将曲线分为AB、BC、C D 三个过程,它们对应的加速度值分别为aAB=%二 殳=20 m s-2(匀力摩直线运动),“鼠=(匀速直线运动)勿 一 -10 m-s-2(匀减速直线运动)fc根据上述结果即可作出质点的a f 图 图(B).在匀变速直线运动中,有1 2X=X+VQI H t由此,可计算在0 2 s 和4 6 s 时间间隔内各时刻的位置分别为Z/s0()511.544.555.
7、56x/m0-7.5-10-7.504048.85558.860用描数据点的作图方法,由表中数据可作0 2 s 和4 6 s 时间内的x-f图.在2 4 s 时间内,质点是作v=2Q m-s-1的匀速直线运动,其X:图是斜率4=20的一段直线 图(c).1-8分析 质点的轨迹方程为y =。),可由运动方程的两个分量式乂。和乂。中消去/即可得到.对于/;AA X、A s 来说,物理含义不同,可根据其定义计算.其中对欲求解用到积分方法,先在轨迹上任取一段微元ds,则#=-/(dx)2+(dy)2,最后用 s=jds,积分求 s.解(1)由X。和乂。中消去t 后得质点轨迹方程为,y=2 x24这是一
8、个抛物线方程,轨迹如图所示.将/=0s和/=2 s分别代入运动方程,可得相应位矢分别为?=2,,r2=4i-2j图(a)中的P、Q两点,即为f =0s和f =2 s时质点所在位置.(3)由位移表达式相=一 外=(2一%0)1 +(%一乂),=4:-2/其中位移大小|Ar|=J(Ax)2+(4 y)2 =5.66 m而径向增量 =上|一 匐=-y/x;+y;-2.4 7 m*(4)如图(B)所示,所求A s即为图中PQ段长度,先在其间任意处取A B微元ds贝J ds =J(dx)2 +(dy)2 ,由轨道方程可得dy =-g x dx,代入ds,则2 s内路程为(a)题”8图(b)1-9分析由运
9、动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解(1)速度的分量式为巩=-=-10+60/,*At%=虫=1 5-40/,dt当f=0盹 6=-10m-s-1,=15ms-i,则初速度大小为%=18.0m s-设均与x轴的夹角为a,则tana=-a=12341九 2(2)加速度的分量式为d 巩 -(-2 dOy _2aY=-=60 m s,av=-=-40 m sx dr dt则力腱度的大小为 a=版:+a;=72.1m-s-2设a与x轴的夹角为则a 2tan 4=上=一一,=-3341(或32619)4 31-10 分析在升降机与螺丝之间有相对运动的情
10、况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程M=%(。和 及=/(。并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1(1)以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为yt=vot+a t yi=h+vot-g t当螺丝落至底面时,有分=及,即1 2 7 1 2 I 2 八vQt+at=h+vQt gt t=-=0.
11、705 s2 2 g+Q(2)螺丝相对升降机外固定柱子下降的距离为d=一%1 2=VOt+-g t-=0.716m解2(1)以升降机为参考系,此时,螺丝相对它的力摩度大小W =g+a,螺丝落至底面时,有Q =h-(g +a)t2/=J -=0.705 s21 g+a(2)由于升降机在f时间内上升的高度为h-vot+a t2 贝I d-h-h -0.716 m1-1 1分析 该题属于运动学的第一类问题,即已知运动方程,=/(4求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的。秒坐标系,并采用参数方程/=x 3和 片y来表示圆周运动是比较方便的.
12、然后,运用坐标变换=A0+乂和尸=川+,将所得参数方程转换至。XK坐标系中,即得如坐标系中质点P在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 如 图(B)所示,在。切/2兀坐标系中,因e=亍,则质点p的参数方程为x-7?sin/,T,2无,V=-KCOS tT坐标变换后,在。冲坐标系中x-x-,y=y+yo-R co s-t+R则质点P的位矢方程为2n(2兀 、r-7?sin/+Acos t+R j=3sin(0.lnt)i+31-cos(0.17t/)y5s船 速 度 躯 萨 分 另 蛛.271.271.-K.v=R cos-ti+R-sin-=(0.371ms)/d/T
13、T T Ta=d亍r=RRI(Z2T I)2 si-n27r.+r/2兀、2 2兀./八 八-2 -2、.火()cos tj=(0.03TI m s)idt T T T T1-1 2分析为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为如从正午时分开始计时,则杆的影长为s=cos函下午2:00时,杆顶在地面上影子的速度大小为u=-=-吗=1.94x10 m-s-1d/cos
14、-tw/当木干长等于影长时,即s=则1 S T It-arctan =-=3x60 x60 sco h 4a即为下午3:00时.1-13分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由“=5_ 和。=曳 可 得do=adt和dx=vdt,如a=的 或 s =K。,则可两边直接积分.如果a或阡:是时At d/间f的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由 分 析 知,应有 do=1 adt得+%(1)由 f dx=vdt得x=2广一4+%/+X。(2)将f=3s时,x=9m,-2 m s-i代 入(2)得K)二1 m-s-1
15、,A b=0.75 m.于是可得质点运动方程为x=2/2-r4+0.75121-14分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度麻)函数,因此,需将式dvd7;分离变量为=d/后再两边积分.解 选取石子下落方向为y轴正向,下落起点为坐标原点.加(1)由题意知 a=-=A-B udr用分离变量法把式(1)改写为doA-B v=d/将式(2)两边积分并考虑初始条件,有A得石子速度 v=-(l-g-s,)BA由此可知当 时,V T 4为一常量,通常称为极限速度或收尾速度.B(2)再由。=包=且(1 一 e-B,)并考虑初始条件有d/BA得石子运动方程=万/+/-阴 1 层(e-D
16、1-1 5分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a和斗分别积分,从而得到运动方程/的两个分量式X。和乂。.由于本题中质点加速度为恒矢量,故两次积分后所得运动方程1 1为固定形式,即x =xn+vO xt+-axt2和y =%两个分运动均为匀变速直线运动.读者不妨自己2 2验证一下.解 由加速度定义式,根据初始条件4)=0时4=0,积分可得J di?=|adt=j (6i +4 J)dt o=6+4tjdr _又由。=一 及初始条件/=0时,/5 =(1 0 m)z积分可得d/dr =j v d/=1 (6/+4/)d/r =(1 0+3 )i +
17、2r j由上述结果可得质点运动方程的分量式,即x=1 0+3 8 y=2 8消去参数4可得运动的轨迹方程 3 y =2 x-2 0 m这是一个直线方程.直线斜率左=虫=tana=2 ,a=3 3 4一.轨迹如图所示.dr 3题1 -1 5图d7;A 7;1-1 6分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为a=咄 和 瓦=丝.在匀速率圆周运d/Ar动中,它们的大小分别为4=生 为=空,式 中|,|可由图(B)中的几何关系得到,而可由转过的角度A 6求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在A A 0时的极限值.解(1)由图(b)可看到,故Ar =y/v
18、;+啜-2 0叶 2 cos 夕=u J2(l-cos A)而 A/=-=v v所以万=粤=&1依地法(2)将6=90,3 0,1 0,1 分别代入上式得v2 v2a.之 0.9003 ,=0.98861R 2 Rv2 V=0.9987,4=1.000R 4 R以上结果表明,当外0时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度幺.R1-1 7分析 根据运动方程可直接写出其分量式x =X W =刈,从中消去参数掷得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即方=,它与时间间隔的大小有关,当A A O时,平均速度的极限即/瞬时速度0=上.切向和法向加速度是指在自
19、然坐标下的分矢量?和珠,前者只反映质点在切线方向速度大小的dt变化率,即q =上,后者只反映质点速度方向的变化,它可由总加速度a和四得到.在求得4时刻质点的速度和d/1)-法向加速度的大小后,可由公式%=J 求。.P解 由参数方程 x =2.04 y=1 9.0-2.0#消去f得质点的轨迹方程:y =1 9。-0.5 0 2(2)在4 =1.00s到:=2.0s时间内的平均速度-v=-Ar =r,-r.L =n2.0z 6.0 j.t t-,t.(3)质点在任意时刻的速度和加速度分别为.dr.dy.c c.,八.d2x.d2y._ .v(t)=vxi+V J=-i +-j =2.0/-4.0(
20、/a(ti+-j-A.Q m-s j贝 巾=1.00 s时的速度刈 It=is=2.0/4Q/切向和法向加速度分别为,|,=is=穿4=(J-+琳 应=3.58 m-s-2e,an=a2-a;en=1.79 m s 4“1 at At v(4)/=1.0 s质点的速度大小为 v=vx2+vj=4.47 m-s-1 则。=J-=11.17 m1-18分析 物品空投后作平抛运动.忽鬲空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作与速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动
21、过程中只存在竖直向下的重力加速度.为求特定时刻t时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角。或.由图可知,在特定时刻 物体的切向加速度和水平线之间的夹角a可由此时刻的两速度分量以、“求出,这样,也就可将重力加速度g的切向和法向分量求得.解(1)取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x=vt,y =1/2飞机水平飞行速度-100 m s-i,飞机离地面的高度y=100 m,由上述两式可得目标在飞机正下方前的距离x=v I-=452 mV g(2)视线和水平线的夹角为3=arctan =12.5x(3)在任意时刻物品的速度与水平轴的夹角为v,gt
22、a=arctan =arctan%u取自然坐标,物品在抛出2 s时,重力加速度的切向分量与法向分量分别为a,-gsin a-gsin(arctan j=1.88 m s-2an=geos a=g c o s arctan-=9.62 m s-21-1 9分析这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x和y两个方向的分运动均为匀减速直线运动,其初速度分别为K)C OS脚K)sin6其加速度分别为psin丽gcosa.在此坐标系中炮弹落地时,应有y=0,则*=OP.如欲使炮弹垂直
23、击中坡面,则应满足=0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g为恒矢量.故第一问也可由运动方程的矢量式计算,即r=%/+g g/2,做出炮弹落地时的矢量图 如图(B)所 示 ,由图中所示几何关系也可求得而(即图中的,矢量).题1 -19图解1由分析知,炮弹在图(a)所示坐标系中两个分运动方程为1 21 2x=v0tcos -gt sin a(1)y=votsinfi-gfcosa(2)令y=0求得时间,后再代入式(1)得二 八 2 说 sin 4/“.2v:sin 4,“、OP=x=-(cos a cosp-sina sin p)=-cos(a+p)gcosa geosa
24、解2做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有从中消去/后也可得到同样结果.(2)由分析知,如炮弹垂直击中坡面应满足y=0和6=0,则vx-v0cos B-g/sin a=0(3)由(2)(3)两式消去/后得n1tan =-2sin a由此可知.只要角丽或茜足上式,炮弹就能垂直击中坡面,而与心的大小无关.讨论如将炮弹的运动按水平和竖直两个方向分解,求解本题将会上嗷困难,有兴趣读者不妨自己体验一下.1-20分析 选定伞边缘。处的雨滴为研究对象,当伞以角速度3 旋转时,雨滴将以速度-沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可
25、求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布yW oa)题1 -2()图解(1)如图(a)所示坐标系中,雨滴落地的运动方程为x=vt=Rcot(1)y=gt2=h由式(1)(2)可得2_ 2R2co2hg由图(a)所示几何关系得雨滴落地处圆周的半径为r-x2+R2=R(2)常用草坪喷水器采用如图(b)所示的球面喷头(6b=45)其上有大量小孔.喷头旋转时,水滴以初速度乃从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上,则以谈喷射的水柱射程为.J o s in 2g为使喷头
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 第五 马文 课后 答案
限制150内