新人教版初二数学八年级数学(上)全册教案.pdf
《新人教版初二数学八年级数学(上)全册教案.pdf》由会员分享,可在线阅读,更多相关《新人教版初二数学八年级数学(上)全册教案.pdf(76页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新人教版初二数学八年级数学()全册教案新人教版八年级数学 上 全册教案第十一章全等三角形11.1全等三角形教学目标1 了解全等形及全等三角形的的概念2 理解全等三角形的性质3 在图形变换以及实际操作的过程中发展学生的空间观念培养学生的几何直觉4 学生通过观察发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣重点探究全等三角形的性质难点掌握两个全等三角形的对应边对应角教学过程观察下列图案指出这些图案中中形状与大小相同的图形问题你还能举出生活中一些实际例子吗这些形状大小相同的图形放在一起能够完全重合能够完全重合的两个图形叫做全等形能够完全重合的两个
2、三角形叫做全等三角形引导学生完成课本P 3 思考归纳一个图形经过平移翻折旋转后位置变化了但形状大小都没有改变即平移翻折旋转前后的图形全等全等用名表示读作全等于两个三角形全等时通常把表示对应顶点的字母写在对应的位置上如/A B C和/D E F 全等时点A 和点D 点B 和点E点C 和点F 是对应顶点记作Z l A B C g /D E F把两个全等的三角形重合到一起重合的顶点叫做对应顶点重合的边叫做对应边重合的角叫做对应角思考如课本P 3 思考图1 1 1-1 中/A B C 式/D E F 对应边有什么关系对应角呢归纳全等三角形性质全等三角形的对应边相等全等三角形的对应角相等思考1下面是两个
3、全等的三角形按下列图形的位置摆放指出它们的对应顶点对应边对应角2 将/A B C 沿直线B C 平移得到/D E F 说出你得到的结论说明理由3 如图/A B E g/A C D A B 与A C A D 与A E 是对应边已知N A 4 3 Z B 3 0 求NA D C 的大小作业P 4 习题1 1 1 第 1 2 3 题课题1 1.2 三角形全等的判定1教学目标经历探索三角形全等条件的过程体会利用操作归纳获得数学结论的过程.掌握三角形全等的边边边条件了解三角形的稳定性.通过对问题的共同探讨培养学生的协作精神.教学难点三角形全等条件的探索过程.一复习过程引入新知多媒体显示带领学生复习全等三
4、角形的定义及其性质从而得出结论全等三角形三条边对应相等三个角分别对应相等.反之这六个元素分别相等这样的两个三角形一定全等.二创设情境提出问题根据上面的结论提出问题两个三角形全等是否一定需要六个条件呢如果只满足上述六个条件中的一部分是否也能保证两个三角形全等呢组织学生进行讨论交流经过学生逐步分析各种情况逐渐明朗进行交流予以汇总归纳.三建立模型探索发现出示探究1 先任意画一个4 A B C 再画一个4 A B C 使4 A B C 与4 A B C 满足上述条件中的一个或两个.你画出的A A B C 与A A B C 一定全等吗让学生按照下面给出的条件作出三角形.1三角形的两个角分别是3 0 5
5、0 .2三角形的两条边分别是4 c m 6 c m.3三角形的一个角为3 0 条边为3 c m.再通过画一画剪一剪比一比的方式得出结论只给出一个或两个条件时都不能保证所画出的三角形一定全等.出示探究2先任意画出一个4 A B C 使 A B=A B B C=B C C A=C A 把画好的4A B C 剪下放到4 A B C 上它们全等吗让学生充分交流后在教师的引导下作出4 A B C 并通过比较得出结论三边对应相等的两个三角形全等.四应用新知体验成功实物演示由三根木条钉成的一个三角形的框架它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例1 如下图A A B C 是一个钢架A B=
6、A C A D 是连接点A与B C 中点D的支架求证 aA B D 丝 ZA C D.让学生独立思考后口头表达理由由教师板演推理过程.例 2 如图是用圆规和直尺画已知角的平分线的示意图作法如下以A 为圆心画弧分别交角的两边于点B 和点C分别以点B C 为圆心相同长度为半径画两条弧两弧交于点D画射线A D.A D 就是N B A C 的平分线.你能说明该画法正确的理由吗例 3 如图四边形A B C D 中A B=C D A D=B C 你能把四边形A B C D 分成两个相互全等的三角形吗你有几种方法你能证明你的方法吗试一试.五巩固练习课本P 8 页的练习.六反思小结回顾反思本节课对知识的研究探
7、索过程小结方法及结论提炼数学思想掌握数学规律.七布置作业课本P15习题11.2第12题.课题1 1 2三角形全等的判定2教学目标经历探索三角形全等条件的过程培养学生观察分析图形能力动手能力.在探索三角形全等条件及其运用的过程中能够进行有条理的思考并进行简单的推理.通过对问题的共同探讨培养学生的协作精神.教学难点指导学生分析问题寻找判定三角形全等的条件.知识重点应用边角边证明两个三角形全等进而得出线段或角相等.教学过程师生活动一情境引入课题多媒体出示探究3已知任意AABC画AABC使AB=ABAC=ACNA=ZA.教帅点拨学生边学边画图再让学生把画好的4ABC剪下放在4ABC上观察这两个三角形是
8、否全等.二交流对话探求新知根据前面的操作鼓励学生用自己的语言来总结规律两边和它们的夹角对应相等的两个三角形全 等.S A S补充强调角必须是两条相等的对应边的夹角边必须是夹相等角的两对边.三应用新知体验成功出示例2如图有池塘要测池塘两端A B 的距离可先在平地上取一个可以直接到达A 和 B 的点C 连接A C 并延长到D 使C D=C A 连接B C 并延长到E 使C E=C B.连接 D E 那么量出D E 的长就是A B 的距离为什么让学生充分思考后书写推理过程并说明每一步的依据.若学生不能顺利得到证明思路教师也可作如下分析要想证A B=D E只需证a A B C 丝Z D E CA B
9、C 与A D E C 全等的条件现有还需要明确证明分别属于两个三角形的线段相等或者角相等的问题常常通过证明这两个三角形全等来解决.补充例题1 己知如图 A B A C A D A E Z B A C Z D A E求 证 A A B D 之4 A C E证明.N B A C N D A E 已知Z B A C Z C A D Z D A E Z C A DA Z B A D Z C A E在4 A B D 与 4 A C EA B A C 已知Z B A D Z C A E 己证A D A E 已知/.A B D A A C E S A S思考求证 1 B D C E 2 Z B Z C 3
10、Z A D B Z A E C变式 1 已知如图 A B,A C A D _ L A E A B A C A D A E求证 A D A C 之A E A BB E D C Z B Z C ZD ZE B E C D四再次探究释解疑惑出示探究4 我们知道两边和它们的夹角对应相等的两个三角形全等.由两边及其中一边的对角对应相等的条件能判定两个三角形全等吗为什么让学生模仿前面的探究方法得出结论两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示方法一 教科书1 0 页图1 1 2-7.方 法 二 通过画图让学生更直观地获得结论.五巩固练习课本P 1 0 页练习1 2.六小结提高1 .判定三
11、角形全等的方法2 .证明线段角相等常见的方法有哪些让学生自由表述其他学生补充让学生自己将知识系统化以自己的方式进行建构.七布置作业1.课本P1 5 页习题1 1.2第 3 4 题.2.选作题1小明做了一个如图所示的风筝测得D E=D F E H=F H 你能发现哪些结沦并说明理由.2 如图N1 =N2 A B=A D A E=A C 求证 B C=D E.课 题 112三角形全等的判定3教学目标探索并掌握两个三角形全等的条件A S A A A S 并能应用它们判别两个三角形是否全等.经历作图比较证明等探究过程提高分析作图归纳表达逻辑推理等能力并通过对知识方法的总结培养反思的习惯培养理性思维.敢
12、于面对教学活动中的困难能通过合作交流解决遇到的困难.教学重点理解掌握三角形全等的条件A S A A A S.教学难点探究出A S A A A S 以及它们的应用.教学过程师生活动创设情境复习师我们已经知道三角形全等的判定条件有哪些生 S S S S A S师那除了这两个条件满足另一些条件的两个三角形是否也可能全等呢今天我们就来探究三角形全等的另一些条件探究新知一张教学用的三角形硬纸板不小心被撕坏了如图你能制作一张与原来同样大小的新教具能恢复原来三角形的原貌吗1.师我们先来探究第一种情况.课件出示探究51探究5先任意画出一个AABC再画一个AABC使AB=AB/A=N A/B=N B即使两角和它
13、们的夹边对应相等.把 画好的AABC剪下放到AABC上它们全等吗师怎样画出AABC先自己独立思考动手画一画在画的过程中若遇到不能解决的问题.可小组合作交流解决.生独立探究试着画a A B C有问题的可以小组内交流解决2全班讨论交流我们又增加了种判别三角形全等的方法.特别应注意边必须是两角的夹边.练习已知如图AB ACZA ZA Z B ZC求证 ABE丝AACD已知点D在AB上点E在AC上BE和CD相交于点OAB ACZB Z C求证BD CE2.探究6师我们再看看下面的条件在 4ABC 和 ADEF 中 Z A=Z D Z B=ZEBC=EFAABC 与 ADEF 全等吗能利用角边角条件证明
14、你的结论吗师看已知条什能否用角边角条件证明.师你是怎么证明的根据学生的不同探究结果进行不同的引导师从这可以看出从这些已知条件中能得出两个三角形全等.这又反映了一个什么规律师生1很好这条件我们可以简写成角角边或AAS又增加了判定两个三角形全等的一个条件.强调AAS中的边是其中一个角的对边.多让几个学生描述进一步培养归纳表达的能力.例2.课本P12页例3师从这道例题中我们又得出了证明线段相等的又一方法先证两线段所在的三角形全等这样对应边也就相等了.探究71三角对应相等的两个三角形全等吗师想想怎样来探究这个问题引导学生通过画两个三角对应相等的三角形看是否一定全等或用两个同一形状但大小不同的三角板等等
15、方法来探究说明.师这一规律我们可以怎样表达2师说得非常好.现在我们来小结一下判定两个三角形全等我们已有了哪些方法SSS SAS ASA AAS小结提高师这节课通过对两个三角形全等条件的进一步探究你有什么收获巩固练习课本P13页练习12.布置作业1课本P15页习题112第611题2.如图小明不慎将一块三角形模具打碎为两块他是否可以只带其中的一块碎片到商店去就能配一块与原来一样的三角形模具呢如果可以带哪块去合适为什么课 题1 1 2三角形全等的判定4教学目标探索并掌握两个直角三角形全等的条件HL并能应用它判别两个直角三角形是否全等.经历作图比较证明等探究过程提高分析作图归纳表达逻辑推理等能力并通过
16、对知识方法的总结培养反思的习惯培养理性思维.提高应用数学的意识.教学重点理解掌握三角形全等的条件HL.教学过程提问1判定两个三角形全等方法有创设情境显示图片舞台背景的形状是两个直角三角形工作人员想知道这两个直角三角形是否全等但每个三角形都有一条直角边被花盆遮住无法测量1 你能帮他想个办法吗方法一测量斜边和一个对应的锐角A A S方法二测量没遮住的一条直角边和一个对应的锐角 A S A 或 A A S如果他只带了一个卷尺能完成这个任务吗工作人员测量了每个三角形没有被遮住的直角边和斜边发现它们分别对应相等于是他就肯定两个直角三角形是全等的你相信他的结论吗下面让我们一起来验证这个结论新课已知线段a
17、c aVc和一个直角a利用尺规作一个R t a A B C 使N C Z a C Ba A B c想一想怎样画呢按照下面的步骤做一做(1)作 N M C N Z a 9 0(2)在射线C M 上截取线段C B a 以B为圆心C 为半径画弧交射线C N 于点A(4)连接A B A A B C 就是所求作的三角形吗剪下这个三角形和其他同学所作的三角形进行比较它们能重合吗直角三角形全等的条件斜边和一条直角边对应相等的两个直角三角形全等简写成斜边直角边或HL想一想你能够用几种方法说明两个直角三角形全等直角三角形是特殊的三角形所以不仅有一般三角形判定全等的方法SASASAAASSSS还有直角三角形特殊的
18、判定方法HL练一练如图两根长度为12米的绳子一端系在旗杆上另一端分别固定在地面两个木桩上两个木桩离旗杆底部的距离相等吗请说明你的理由2如图有两个长度相同的滑梯左边滑梯的高度AC与右边滑梯水平方向的长度DF相等两个滑梯的倾斜角NABC和N D FE的大小有什么关系解NABC/DFE 9 0 0理由如下在 RtAABC 和 RtADEF 中则BC EFAC DF.RtAABCRtAD EF HLZABC ZDEF全等三角形对应角相等又 ZDEFZDFE 90ZABCZDFE 900小结这节课你有什么收获呢与你的同伴进行交流作业课本P16页第78题11.3.1角的平分线的性质一教学目标一教学知识点角
19、平分线的画法.二能力训练要求1.应用三角形全等的知识解释角平分线的原理.2.会用尺规作一个已知角的平分线.三情感与价值观要求在利用尺规作图的过程中培养学生动手操作能力与探索精神.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程一.提出问题创设情境问题1三角形中有哪些重要线段.问题2你能作出这些线段吗如果老师手里只有直尺和圆规你能帮我设计一个作角的平分线的操作方案吗二.导入新课议一议下图是一个平分角的仪器其中A B A D B C D C.将点A放在角的顶点 A B 和 A D 沿着角的两边放下沿A C 画一条射线A E A E 就是角平分线.你能说明它的道理吗教师
20、活动演示角平分仪器的操作过程使学生直观了解得到射线A C 的方法.A B A DB C D CA C A C所以 A A B C 丝 A A D C S S S.所以 N C A D Z C A B.即射线A C 就是/D A B 的平分线.老师再提出问题通过上述探究能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动教师可参与到学生活动中及时发现问题给予启发和指导使讲评更具有针对性讨论结果展示作已知角的平分线的方法已知N A O B.求作N A O B 的平分线.作法1 以0 为圆心适当长为半径作弧分别交O A O B 于M N.2 分别以MN
21、为圆心大于MN的长为半径作弧.两弧在NAOB内部交于点c.3 作射线0C射线0C即为所求.教师根据学生的叙述作多媒体课件演示使学生能更直观地理解画法提高学习数学的兴趣.议一议1.在上面作法的第二步中去掉大于MN的长这个条件行吗2.第二步中所作的两弧交点一定在NAOB的内部吗设计这两个问题的目的在于加深对角的平分线的作法的理解培养数学严密性的良好学习习惯学生讨论结果总结1.去掉大于MN的长这个条件所作的两弧可能没有交点所以就找不到角的平分线.2.若分别以MN为圆心大于MN的长为半径画两弧两弧的交点可能在NA O B 的内部也可能在N A O B 的外部而我们要找的是/A O B 内部的交点否则两
22、弧交点与顶点连线得到的射线就不是NAOB的平分线了.3.角的平分线是一条射线.它不是线段也不是直线所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.练一练任意画一角NAOB作它的平分线.三.随堂练习课本P19练习.练后总结平角ZAOB的平分线0C与直线AB垂直.将0C反向延长得到直线CD直线 CD与AB也垂直.四.课时小结本节课中我们利用已学过的三角形全等的知识探究得到了角平分线仪器的操作原理由此归纳出角的平分线的尺规画法进一步体会温故而知新是一种很好的学习方法.五.课后作业课本P22习题11.2 第 12题.11.3.2角的平分线的性质二教学目标一教学知识点角的平
23、分线的性质二能力训练要求1.会叙述角的平分线的性质及到角两边距离相等的点在角的平分线上.2.能应用这两个性质解决一些简单的实际问题.三情感与价值观要求通过折纸画图文字一符号的翻译活动培养学生的联想探索概括归纳的能力激发学生学习数学的兴趣.教学重点角平分线的性质及其应用.教学难点灵活应用两个性质解决问题.教学方法探索归纳的方法.教学过程一.创设情境引入新课 师 请同学们拿出准备好的折纸与剪刀自己动手剪一个角把剪好的角对折使角的两边叠合在一起再把纸片展开你看到了什么把对折的纸片再任意折一次然后把纸片展开又看到了什么二.导入新课角平分线的性质即已知角的平分线能推出什么样的结论.操作1 .折出如图所示
24、的折痕P DP E.2 .你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画按照折纸的顺序画出一个角的三条折痕并度量所画P DP E是否等长拿出两名同学的画图放在投影下请大家评一评以达明确概念的目的.问题1 你能用文字语言叙述所画图形的性质吗问题2出示投影片能否用符号语言来翻译角平分线上的点到角的两边的距离相等这句话.请填下表学生通过讨论作出下列概括已知事项0 C平分N A O B P DJ _ O A P E_ L O B DE为垂足.由已知事项推出的事项P D P E.于是我们得角的平分线的性质在角的平分线上的点到角的两边的距离相等.师 那么到角的两边距离相等的点是否在角的平分线上
25、呢出示投影问 题 3根据下表中的图形和已知事项猜想由已知事项可推出的事项并用符号语言填写下表下面请同学们思考一个问题.思考如图所示要在S区建一个集贸市场使它到公路铁路距离相等离公路与铁路交叉处5 0 0 m 这个集贸市场应建于何处在图上标出它的位置比例尺为1 2 0 0 0 01 .集贸市场建于何处和本节学的角平分线性质有关吗用哪一个性质可以解决这个问题2 .比例尺为1 2 0 0 0 0 是什么意思讨论结果展示1 .应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上并且要求离角的顶点5 0 0 米处.2 .在纸上画图时我们经常在厘米为单位而题中距离又是以米为单位这就涉及一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 初二 数学 八年 级数 教案
限制150内