1.1复习线性回归方程的求法.ppt





《1.1复习线性回归方程的求法.ppt》由会员分享,可在线阅读,更多相关《1.1复习线性回归方程的求法.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、必修必修3(3(第二章第二章 统计统计)知识结构知识结构 收集数据收集数据 (随机抽样随机抽样)整理、分析数据整理、分析数据估计、推断估计、推断简简单单随随机机抽抽样样分分层层抽抽样样系系统统抽抽样样用样本估计总体用样本估计总体变量间的相关关系变量间的相关关系 用样本用样本的频率的频率分布估分布估计总体计总体分布分布 用样本用样本数字特数字特征估计征估计总体数总体数字特征字特征线线性性回回归归分分析析统计的基本思想统计的基本思想实际实际样本样本模模 拟拟抽抽 样样分分 析析问题问题1 1:正方形的面积正方形的面积y y与正方形的边长与正方形的边长x x之间之间 的的函数关系函数关系是是y=xy
2、=x2 2确定性关系确定性关系问题问题2 2:某水田水稻产量某水田水稻产量y y与施肥量与施肥量x x之间是否之间是否 -有一个确定性的关系?有一个确定性的关系?例如:例如:在在 7 7 块并排、形状大小相同的试验田块并排、形状大小相同的试验田上上 进行施肥量对水稻产量影响的试验,得到进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:如下所示的一组数据:施施化肥量化肥量x x 15 20 25 30 35 40 45 15 20 25 30 35 40 45水稻产量水稻产量y y 330 345 365 405 445 450 455 330 345 365 405 445 450 45
3、5回顾变量之间的两种关系回顾变量之间的两种关系 自变量取值一定时,因变量的取值带有一自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做定随机性的两个变量之间的关系叫做相关关系相关关系。1 1、定义:、定义:1 1):相关关系是一种不确定性关系;):相关关系是一种不确定性关系;注注对具有相关关系的两个变量进行对具有相关关系的两个变量进行统计分析的方法叫统计分析的方法叫回归分析回归分析。2 2):):2 2、现实生活中存在着大量的相关关系。现实生活中存在着大量的相关关系。如:人的身高与年龄;如:人的身高与年龄;产品的成本与生产数量;产品的成本与生产数量;商品的销售额与广告费;商品
4、的销售额与广告费;家庭的支出与收入。等等家庭的支出与收入。等等探索:水稻产量探索:水稻产量y y与施肥量与施肥量x x之间大致有何之间大致有何规律?规律?10 20 30 40 5010 20 30 40 50500500450450400400350350300300发现:图中各点,大致分布在某条直线附近。发现:图中各点,大致分布在某条直线附近。探索探索2 2:在这些点附近可画直线不止一条,:在这些点附近可画直线不止一条,哪条直线最能代表哪条直线最能代表x x与与y y之间的关系呢?之间的关系呢?x xy y施施化肥量化肥量水稻产量水稻产量施施化肥量化肥量x x 15 20 25 30 35
5、 40 45 15 20 25 30 35 40 45水稻产量水稻产量y y 330 345 365 405 445 450 455 330 345 365 405 445 450 455散点图散点图10 20 30 40 50500450400350300 xy施施化肥量化肥量水稻产量水稻产量怎样求回归直线?怎样求回归直线?最小二乘法:最小二乘法:称为样本点的中心称为样本点的中心。(3 3)对)对两个两个变量进行的线性分析叫做变量进行的线性分析叫做线性回归分析线性回归分析。2 2、回归直线方程、回归直线方程:(2 2)相应的直线叫做)相应的直线叫做回归直线回归直线。(1 1)所求直线方程)所
6、求直线方程 叫做叫做回归直线方程回归直线方程;其中其中(注意回归直线一定经过样本点的中心)(注意回归直线一定经过样本点的中心)例例1 假设关于某设备的使用年限假设关于某设备的使用年限x和所有支出的维修费用和所有支出的维修费用y(万万元元)有如下的统计数据:有如下的统计数据:x23456Y2.23.85.56.57.0若由此资料所知若由此资料所知y对对x呈线性相关关系,试求:呈线性相关关系,试求:1.回归直线方程回归直线方程2.估计使用年限为估计使用年限为10年时,维修费用是多少?年时,维修费用是多少?解题步骤:解题步骤:1.作散点图作散点图2.把数据列表,计算相应的值,求出回归系数把数据列表,
7、计算相应的值,求出回归系数3.写出回归方程写出回归方程,并按要求进行预测说明。并按要求进行预测说明。例例2(2007年广东)下表提供了某厂节能降耗技术改造后生产年广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量甲产品过程中记录的产量x(吨)与相应的生产能耗(吨)与相应的生产能耗y(吨标准吨标准煤煤)的几组对应数据。的几组对应数据。X3456y2.5344.5(1)请画出上表数据的散点图请画出上表数据的散点图(2)请根据上表提供的数据,用最小二乘法求出请根据上表提供的数据,用最小二乘法求出y关于关于x的的(3)性回归方程性回归方程(3)已知该厂技改前已知该厂技改前100吨甲产品的
8、生产能耗为吨甲产品的生产能耗为90吨标准吨标准 煤,试根据(煤,试根据(2)求出的线性回归方程,预测生产)求出的线性回归方程,预测生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:(参考数值:)小结:求回归直线方程小结:求回归直线方程的步骤的步骤(2 2)所求直线方程)所求直线方程 叫做叫做回归直线方程回归直线方程;其中其中(1)作散点图,通过图看出样本点是否呈条状分)作散点图,通过图看出样本点是否呈条状分 布,进而判断两个量是否具有线性相关关系。布,进而判断两个量是否具有线性相关关系。(3)根据回归方程,并按要求进行预测说明。)根
9、据回归方程,并按要求进行预测说明。第一章第一章 统计案例统计案例1.1回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用(第二课时)(第二课时)a.比数学3中“回归”增加的内容数学统计1.画散点图画散点图2.了解最小二乘法了解最小二乘法的思想的思想3.求回归直线方程求回归直线方程ybxa4.用回归直线方程用回归直线方程解决应用问题解决应用问题选修-统计案例5.引入线性回归模型引入线性回归模型ybxae6.了解模型中随机误差项了解模型中随机误差项e产产生的原因生的原因7.了解相关指数了解相关指数 R2 和模型拟和模型拟合的效果之间的关系合的效果之间的关系8.了解残差图的作用了解残差图的
10、作用9.利用线性回归模型解决一类利用线性回归模型解决一类非线性回归问题非线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果什么是回归分析:什么是回归分析:“回归回归”一词是由英国生物学家一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。在研究人体身高的遗传问题时首先提出的。根据遗传学的观点,子辈的身高受父辈影响,以根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,记父辈身高,Y记子辈身高。记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和和Y之间存
11、在一种相关关系。之间存在一种相关关系。一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点。的身高有向中心回归的特点。“回归回归”一词即源于此。一词即源于此。虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它所描述的关于所描述的关于X为自变量,为自变量,Y为不确
12、定的因变量这种变量间的关系看,和我们现在的为不确定的因变量这种变量间的关系看,和我们现在的回归含义是相同的。回归含义是相同的。不过,现代回归分析虽然沿用了不过,现代回归分析虽然沿用了“回归回归”一词,但内容已有很大变化,它是一种应用一词,但内容已有很大变化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。回归分析的内容与步骤:回归分析的内容与步骤:统计检验通过后,最后是统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量利用回归模型,根据自变量去估计、预测因变量。回归
13、分析通过一个变量或一些变量的变化解释另一变量的变化。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是,其主要内容和步骤是,首先根据理论和对问题的分析判断,首先根据理论和对问题的分析判断,将变量分为自变量和因变量将变量分为自变量和因变量;其次,设法其次,设法找出合适的数学方程式(即回归模型)找出合适的数学方程式(即回归模型)描述变量间的关系;描述变量间的关系;由于涉及到的变量具有不确定性,接着还要由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验对回归模型进行统计检验;例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1 复习 线性 回归 方程 求法

限制150内