八级(上)期末数学试卷两套汇编八(答案解析版).docx
《八级(上)期末数学试卷两套汇编八(答案解析版).docx》由会员分享,可在线阅读,更多相关《八级(上)期末数学试卷两套汇编八(答案解析版).docx(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八级(上)期末数学试卷两套汇编八(答案解析版)八级(上)期末数学试卷两套汇编八(答案解析版) 本文关键词:两套,汇编,期末,八级,解析八级(上)期末数学试卷两套汇编八(答案解析版) 本文简介:八年级(上)期末数学试卷两套汇编八(答案解析版)八年级(上)期末数学试卷一、选择题(1-6小题,每小题2分,7-16小题,每小题2分,共42分)1下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2若分式的值为0,则()Ax=2Bx=0Cx=1Dx=1或23在0.5八级(上)期末数学试卷两套汇编八(答案解析版) 本文内容:八年级(上)期末数学试卷两套汇编八(答案解析版)八年级(上)期末数学试卷一、
2、选择题(1-6小题,每小题2分,7-16小题,每小题2分,共42分)1下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2若分式的值为0,则()Ax=2Bx=0Cx=1Dx=1或23在0.51525354、0.2、中,无理数的个数是()A2B3C4D54下列说法中正确的是()A9的平方根为3B化简后的结果是C最简二次根式D27没有立方根5下列运算中正确的是()ABCD6下列二次根式中,与是同类二次根式的是()ABCD7式子有意义的x取值范围是()Ax1BxCx且x1Dx且x18化简结果是()ABCD9已知等腰三角形的两条边长为1和,则这个三角形的周长为()ABC或D10直角三角形的两边
3、长分别是6,8,则第三边的长为()A10B2C10或2D无法确定11如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面对右滑行在此滑动过程中,点P到点O的距离()A变小B不变C变大D无法推断12如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定ABEACD()AB=CBAD=AECBD=CEDBE=CD13如图,AD是ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:CE=BF;ABD和ACD面积相等;BFCE;BDFCDE其中正确的有()A1个B2
4、个C3个D4个14已知1a,化简+|a2|的结果是()A2a3B2a+3C1D315某市须要铺设一条长660米的管道,为了尽量削减施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原安排增加10%,结果提前6天完成求实际每天铺设管道的长度与实际施工天数小宇同学依据题意列出方程=6则方程中未知数x所表示的量是()A实际每天铺设管道的长度B实际施工的天数C原安排施工的天数D原安排每天铺设管道的长度16如图,已知AB=A1B,A1B1=A1B2,A2B2=A2B3,A3B3=A3B4,若A=73,则An的度数为()ABCD二、填空题(每小题3分,共12分)17(填“”、“”或“=”)18计算
5、的结果是19如图,已知ABC的周长是24,OB,OC分别平分ABC和ACB,ODBC于D,且OD=3,则ABC的面积是20如图,在RtABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则BDE周长的最小值为三、解答题(本题共6个小题,共66分)21先化简,再求值:,其中x=122(1)计算:(3)(3+)+(2)(2)解方程:+1=23如图,点B,F,C,E在直线l上(F,C之间不能干脆测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC(1)求证:ABCDEF;(2)指出图中全部平行的线段,并说明理由24在ABC中,AB=15,BC=14,AC=13
6、,求ABC的面积某学习小组经过合作沟通,给出了下面的解题思路,请你根据他们的解题思路完成解答过程25甲、乙两同学的家与学校的距离均为3000米甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?26已知MAN=120,AC平分MAN,点B、D分别在AN、AM上(1)如图1,若ABC=ADC=90,请你探究线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若ABC+ADC=180,则(
7、1)中的结论是否仍旧成立?若成立,给出证明;若不成立,请说明理由参考答案与试题解析一、选择题(1-6小题,每小题2分,7-16小题,每小题2分,共42分)1下列图形中,既是轴对称图形又是中心对称图形的是()ABCD【考点】中心对称图形;轴对称图形【分析】依据轴对称图形的定义和中心对称图形的定义回答即可【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确故选:D2若分式的值为0,则()Ax=2Bx=0Cx=1Dx=1或2【考点】分式的值为零的条件【分析
8、】依据分式的值为0的条件列出关于x的不等式组,求出x的值即可【解答】解:分式的值为0,解得x=1故选:C3在0.51525354、0.2、中,无理数的个数是()A2B3C4D5【考点】无理数【分析】先把化为,化为3的形式,再依据无理数就是无限不循环小数进行解答即可【解答】解:=,=3,在这一组数中无理数有:在0.51525354、共3个故选B4下列说法中正确的是()A9的平方根为3B化简后的结果是C最简二次根式D27没有立方根【考点】分母有理化;平方根;立方根;最简二次根式【分析】依据平方根和立方根的定义作推断【解答】解:A、9的平方根是3,所以选项A不正确;B、=,所以选项B正确;C、=2,
9、所以不是最简二次根式,选项C不正确;D、27的立方根是3,所以选项D不正确故选B5下列运算中正确的是()ABCD【考点】分式的基本性质;分式的加减法【分析】A选项是分式的加法运算,先通分,然后再相加;B、C、D可依据分式的基本性质逐项进行推断【解答】解:A、,故A错误B、,故B错误C、=,故C正确D、=x+y,故D错误故选C6下列二次根式中,与是同类二次根式的是()ABCD【考点】同类二次根式【分析】干脆利用同类二次根式的定义分别化简二次根式求出答案【解答】解:A、=3,与不是同类二次根式,故此选项错误;B、=,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、
10、=,与不是同类二次根式,故此选项错误;故选:B7式子有意义的x取值范围是()Ax1BxCx且x1Dx且x1【考点】二次根式有意义的条件【分析】依据被开方数大于等于0,分母不等于0列式计算即可得解【解答】解:由题意得,2x+10且x10,解得x且x1故选C8化简结果是()ABCD【考点】二次根式的乘除法【分析】干脆利用二次根式的性质化简求出答案【解答】解:=故选:A9已知等腰三角形的两条边长为1和,则这个三角形的周长为()ABC或D【考点】二次根式的应用;等腰三角形的性质【分析】分1是腰长和底边长两种状况探讨求解【解答】解:1是腰时,三角形的三边分别为1、1、,1+1=2,此时不能组成三角形;1
11、是底边时,三角形的三边分别为1、,能够组成三角形,周长为1+=1+2,综上所述,这个三角形的周长为1+2故选B10直角三角形的两边长分别是6,8,则第三边的长为()A10B2C10或2D无法确定【考点】勾股定理【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边既可以是直角边,也可以是斜边,所以求第三边的长必需分类探讨,即较长是斜边或直角边的两种状况,然后利用勾股定理求解【解答】解:长为8的边可能为直角边,也可能为斜边当8为直角边时,依据勾股定理,第三边的长=10;当8为斜边时,依据勾股定理,第三边的长=2故选C11如图,一根木棍斜靠在与地面(OM)垂直的
12、墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面对右滑行在此滑动过程中,点P到点O的距离()A变小B不变C变大D无法推断【考点】直角三角形斜边上的中线【分析】依据直角三角形斜边上中线等于斜边的一半得出OP=AB=a,即可得出答案【解答】解:在木棍滑动的过程中,点P到点O的距离不发生改变,理由是:连接OP,AOB=90,P为AB中点,AB=2a,OP=AB=a,即在木棍滑动的过程中,点P到点O的距离不发生改变,恒久是a;故选B12如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定ABEACD()AB=CBAD=AECBD=CED
13、BE=CD【考点】全等三角形的判定【分析】欲使ABEACD,已知AB=AC,可依据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可【解答】解:AB=AC,A为公共角,A、如添加B=C,利用ASA即可证明ABEACD;B、如添AD=AE,利用SAS即可证明ABEACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明ABEACD;D、如添BE=CD,因为SSA,不能证明ABEACD,所以此选项不能作为添加的条件故选:D13如图,AD是ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:CE=BF;ABD和ACD面积相等;BFCE;
14、BDFCDE其中正确的有()A1个B2个C3个D4个【考点】全等三角形的判定与性质【分析】依据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,解除错误答案【解答】解:AD是ABC的中线,BD=CD,又CDE=BDF,DE=DF,BDFCDE,故正确;由BDFCDE,可知CE=BF,故正确;AD是ABC的中线,ABD和ACD等底等高,ABD和ACD面积相等,故正确;由BDFCDE,可知FBD=ECDBFCE,故正确故选:D14已知1a,化简+|a2|的结果是()A2a3B2a+3C1D3【考点】二次根式的性质与化简【分析】依据二次根式的性质、肯定值的性质,可化简整式,依据整式的加减,可
15、得答案【解答】解:由1a,得+|a2=a1+2a=1,故选:C15某市须要铺设一条长660米的管道,为了尽量削减施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原安排增加10%,结果提前6天完成求实际每天铺设管道的长度与实际施工天数小宇同学依据题意列出方程=6则方程中未知数x所表示的量是()A实际每天铺设管道的长度B实际施工的天数C原安排施工的天数D原安排每天铺设管道的长度【考点】分式方程的应用【分析】小宇所列方程是依据相等关系:原安排所用时间实际所用时间=6,可知方程中未知数x所表示的量【解答】解:设原安排每天铺设管道x米,则实际每天铺设管道(1+10%)x,依据题意,可列方程:=
16、6,所以小宇所列方程中未知数x所表示的量是原安排每天铺设管道的长度,故选:D16如图,已知AB=A1B,A1B1=A1B2,A2B2=A2B3,A3B3=A3B4,若A=73,则An的度数为()ABCD【考点】等腰三角形的性质【分析】先依据等腰三角形的性质求出BA1A的度数,再依据三角形外角的性质及等腰三角形的性质分别求出B1A2A1,B2A3A2及B3A4A3的度数,找出规律即可得出An1AnBn1的度数【解答】解:在ABA1中,A=73,AB=A1B,BA1A=A=73,A1A2=A1B1,BA1A是A1A2B1的外角,B1A2A1=35;同理可得,B2A3A2=40,B3A4A3=20,
17、An1AnBn1=故选C二、填空题(每小题3分,共12分)17(填“”、“”或“=”)【考点】实数大小比较;不等式的性质【分析】求出2,不等式的两边都减1得出11,不等式的两边都除以2即可得出答案【解答】解:2,121,11故答案为:18计算的结果是【考点】实数的运算【分析】首先化简,然后依据实数的运算法则计算【解答】解:=2=故答案为:19如图,已知ABC的周长是24,OB,OC分别平分ABC和ACB,ODBC于D,且OD=3,则ABC的面积是36【考点】角平分线的性质【分析】依据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到ABC的面积等于周长的一半乘
18、以OD,然后列式进行计算即可求解【解答】解:如图,连接OA,OB、OC分别平分ABC和ACB,点O到AB、AC、BC的距离都相等,ABC的周长是24,ODBC于D,且OD=3,SABC=243=36,故答案为:3620如图,在RtABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则BDE周长的最小值为2+2【考点】轴对称-最短路途问题【分析】作B关于AC的对称点B,连接BD、BC、BE,得BC=BC=4,且BBC是等腰直角三角形,所以利用勾股定理得DB的长,所以可以求得BDE的周长的最小值为2+2【解答】解:过B作BOAC于O,延长BO至B,使BO=BO,连接BD
19、,交AC于E,连接BE、BC,AC为BB的垂直平分线,BE=BE,BC=BC=4,此时BDE的周长为最小,BBC=45,BBC=45,BCB=90,D为BC的中点,BD=DC=2,BD=2,BDE的周长=BD+DE+BE=BE+DE+BD=DB+DB=2+2,故答案为:2+2三、解答题(本题共6个小题,共66分)21先化简,再求值:,其中x=1【考点】二次根式的化简求值;分式的混合运算【分析】把分子进行因式分解,和分母达到约分的目的,然后代值计算【解答】解:原式=当x=1时,原式=122(1)计算:(3)(3+)+(2)(2)解方程:+1=【考点】二次根式的混合运算;解分式方程【分析】(1)利
20、用平方差公式进行计算,并化简即可;(2)先去分母方程的两边同时乘以x2,解方程,并进行检验【解答】解:(1)计算:(3)(3+)+(2),=97+22,=2;(2)解方程:+1=,去分母得:x3+x2=3,2x=2,x=1,检验:当x=1时,x2=120,x=1是原方程的解23如图,点B,F,C,E在直线l上(F,C之间不能干脆测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC(1)求证:ABCDEF;(2)指出图中全部平行的线段,并说明理由【考点】全等三角形的判定与性质【分析】(1)先证明BC=EF,再依据SSS即可证明(2)结论ABDE,ACDF,依据全等三角形的性质即可证明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 期末 数学试卷 套汇 答案 解析
限制150内