2023年四川遂宁中考数学真题(含答案).docx
《2023年四川遂宁中考数学真题(含答案).docx》由会员分享,可在线阅读,更多相关《2023年四川遂宁中考数学真题(含答案).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、烦恼多多少少,放松必不可少;给自己一个微笑,迎来的将是一片美好!2023年四川遂宁中考数学真题及答案试卷满分150分 考试时间120分钟注意事项:1答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并检查条形码粘贴是否正确2回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效3考试结束后,将本试卷和答题卡一并交回一、选择题(本大题共10个小题,每小题4分,共40分在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 已知算式的值为,
2、则“”内应填入的运算符号为( )A. B. C. D. 【答案】A【解析】【分析】根据相反数相加为0判断即可【详解】解:,“”内应填入的运算符号为,故选:A【点睛】题目主要考查有理数的加法运算,熟练掌握运算法则是解题关键2. 下列运算正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据积的乘方、完全平方公式、合并同类项,同底数幂的乘法,依次进行判断即可得出结果【详解】解;A、,本选项不符合题意;B、,本选项不符合题意;C、,本选项符合题意;D、,本选项不符合题意;故选:C【点睛】题目主要考查积的乘方、完全平方公式、合并同类项,同底数幂的乘法,熟练掌握各个运算法则是解题关键3.
3、纳米是表示微小距离的单位,1纳米毫米,而1毫米相当于我们通常使用的刻度尺上的一小格,可想而知1纳米是多么的小中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管直径纳米纳米相当于毫米,数据用科学记数法可以表示为( )A. B. C. D. 【答案】D【解析】【分析】根据小于1的正数也可以利用科学记数法表示,一般形式为,,n为第一位有效数字前面0的个数【详解】解:故选:D【点睛】此题主要考查了用科学记数法表示较小的数;一般形式为,n为整数,确定a与n的值是解题的关键4. 生活中一些常见的物体可以抽象成立体图形,以下立体图形中三视图形状相同的可能是( ) A. 正方体B. 圆锥C. 圆柱
4、D. 四棱锥【答案】A【解析】【分析】根据几何体的三视图形状判定即可【详解】A. 正方体的三视图都是正方形,符合题意;B.圆锥的主视图是等腰三角形,左视图是等腰三角形,俯视图是圆(带圆心),不符合题意;C. 圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意; D. 四棱锥主视图是三角形,左视图是三角形,俯视图是四边形,不符合题意; 故选A【点睛】本题考查了几何体的三视图,熟练掌握三视图是解题的关键5. 九章算术是我国古代数学的经典书,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等;交易其一,金轻十三两问金、银一枚各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中
5、装有白银11枚(每枚白银重量相同),称重两袋相等两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计)问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可列方程组为( )A. B. C. D. 【答案】C【解析】【分析】根据题意第一个等量关系为9枚黄金和11枚白银的重量相等列二元一次方程;再根据第二个等量关系为1枚黄金和10枚白银重量和比8枚黄金和1枚白银重量和大13列二元一次方程,即可得二元一次方程组.【详解】解:设每枚黄金重x两,每枚白银重y两,根据题意得,.故选:C.【点睛】本题考查二元一次方程组的实际应用,找出两个等量关系是列方程组的关键.6. 在方格图中,以格点为
6、顶点的三角形叫做格点三角形在如图所示的平面直角坐标系中,格点成位似关系,则位似中心的坐标为( ) A. B. C. D. 【答案】A【解析】【分析】根据题意确定直线的解析式为:,由位似图形的性质得出所在直线与BE所在直线x轴的交点坐标即为位似中心,即可求解【详解】解:由图得:,设直线的解析式为:,将点代入得:,解得:,直线的解析式为:,所在直线与BE所在直线x轴的交点坐标即为位似中心,当时,位似中心的坐标为,故选:A【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键7. 为增强班级凝聚力,吴老师组织开展了一次主题班会班会上,他设计了一个如图的飞镖靶盘
7、,靶盘由两个同心圆构成,小圆半径为,大圆半径为,每个扇形的圆心角为60度如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是( ) A. B. C. D. 【答案】B【解析】【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率免一次作业对应区域的面积大圆面积进行求解即可【详解】解:由题意得,大圆面积为,免一次作业对应区域的面积为,投中“免一次作业”的概率是,故选B【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键8. 若关于x的不等式组的解
8、集为,则a的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】分别求出各不等式的解集,再根据不等式组的解集是求出a的取值范围即可【详解】解:解不等式得:,解不等式得:,关于的不等式组的解集为,故选:D【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9. 如图,在中,点P为线段上的动点,以每秒1个单位长度的速度从点A向点B移动,到达点B时停止过点P作于点M、作于点N,连接,线段的长度y与点P的运动时间t(秒)的函数关系如图所示,则函数图象最低点E的坐标为( ) A. B. C. D. 【答案】C【解析】【分析
9、】如图所示,过点C作于D,连接,先利用勾股定理的逆定理证明是直角三角形,即,进而利用等面积法求出,则可利用勾股定理求出;再证明四边形是矩形,得到,故当点P与点D重合时,最小,即最小,此时最小值为,则点E的坐标为【详解】解:如图所示,过点C作于D,连接,在中,是直角三角形,即,;,四边形矩形,当最小时,即最小,当点P与点D重合时,最小,即最小,此时最小值为,点E的坐标为,故选C 【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键10. 抛物线的图象如图所示,对称轴为直线下列说法:;(t为全体实数);若图象上存在点和点,当时,
10、满足,则m的取值范围为其中正确的个数有( ) A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】开口方向,对称轴,与y轴的交点位置判断,特殊点判断,最值判断,对称性判断即可【详解】抛物线的开口向下,对称轴为直线,抛物线与y轴交点位于负半轴,故正确;由图象可知,根据对称轴,得,故正确;抛物线的开口向下,对称轴为直线,抛物线的最大值为,当时,其函数值为,故错误;如图所示,和点满足, 和点关于对称轴对称,,解得,故正确;故选C【点睛】本题考查了二次函数的图象和性质,熟练掌握二次函数的性质,是解题的关键二、填空题(本大题共5个小题,每小题4分,共20分)11. 若三角形三个内角的比为1
11、:2:3,则这个三角形按角分类是_三角形【答案】直角【解析】【分析】设一份为,则三个内角的度数分别为,然后根据三角形内角和进行求解即可【详解】解:设一份为,则三个内角的度数分别为,则,解得所以,即,故这个三角形是直角三角形故答案是:直角【点睛】本题主要考查三角形内角和,熟练掌握三角形内角和是解题的关键12. 若a、b是一元二次方程的两个实数根,则代数式的值为_【答案】2【解析】【分析】根据根与系数的关系得到,由此即可得到答案【详解】解:a、b是一元二次方程的两个实数根,故答案为:2【点睛】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程,若是该方程的两个实数根,则13. 烷烃是一类由
12、碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护通常用碳原子的个数命名为甲烷、乙烷、丙烷、癸烷(当碳原子数目超过个时即用汉文数字表示,如十一烷、十二烷)等,甲烷的化学式为,乙烷的化学式为,丙烷的化学式为,其分子结构模型如图所示,按照此规律,十二烷的化学式为_ 【答案】【解析】【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解【详解】解:甲烷的化学式为,乙烷的化学式为,丙烷的化学式为,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为,故答案为:【点睛】本题考查了规律题,找到规律是解题的关键14. 如图,中,为对角线,分别以
13、点A、B为圆心,以大于的长为半径画弧,两弧相交于点M、N,作直线交于点E,交于点F,若,则的长为_ 【答案】5【解析】【分析】连接,根据基本作图,得到,利用平行四边形的性质,得,在中,利用勾股定理计算即可详解】解:如图所示,连接,根据基本作图,可设, ,在中,由勾股定理得,解得,即,故答案为:5【点睛】本题考查了平行四边形的性质,线段垂直平分线的基本作图,勾股定理,熟练掌握平行四边形的性质,勾股定理是解题的关键15. 如图,以的边、为腰分别向外作等腰直角、,连结、,过点的直线分别交线段、于点、,以下说法:当时,;若,则;当直线时,点为线段的中点正确的有_(填序号) 【答案】【解析】【分析】当时
14、,是等边三角形,根据等角对等边,以及三角形的内角和定理即可得出,进而判断;证明,根据全等三角形的性质判断;作直线于点, 过点作于点,过点作于点,证明,即可得是的中点,故正确,证明,可得,在中,在中,得出 ,在中,勾股定理即可求解【详解】解:当时,是等边三角形,等腰直角、,;故正确;等腰直角、,;故正确;如图所示,作直线于点, 过点作于点,过点作于点, ,又,又,同理得, ,即是的中点,故正确,设,则在中,在中,解得:,在中,,故错误故答案为:【点睛】本题考查了等腰直角三角形的性质,勾股定理,全等三角形的性质与判定,等腰三角形的性质,等边三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 四川 遂宁 中考 数学 答案
限制150内