初中数学说课稿15篇1.docx
《初中数学说课稿15篇1.docx》由会员分享,可在线阅读,更多相关《初中数学说课稿15篇1.docx(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 初中数学说课稿15篇初中数学说课稿1 敬重的各位考官大家好,我是X号考生,今日我说课的题目是平方差公式。 今日我将从教材分析、学情分析、教学过程等几个方面绽开我的说课。 一、说教材 首先谈谈我对教材的理解。本节课是北师大版初中数学七年级下册第一章第五节的第一课时,主要内容是用代数方法得出平方差公式并进展简洁应用。此前学生把握了多项式乘多项式的计算法则,为本节课的学习做好铺垫。本节课的学习为下一课时进一步学习平方差公式以及今后学习因式分解都奠定了根底。 二、说学情 接下来谈谈学生的实际状况。七年级的学生已经具备了肯定的”观看归纳力量,能在教师引导下解决问题,因此教师要留给学生思索空间,注意对于
2、学生的引导。 三、说教学目标 依据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标: (一)学问与技能 理解并把握平方差公式,能娴熟运用公式进展正确计算。 (二)过程与方法 通过探究得出平方差公式的过程,进展归纳概括力量与符号意识;在应用过程中提升运算力量与分析、解决问题的力量。 (三)情感、态度与价值观 在学习活动中获得胜利的体验,增加学习数学的兴趣与信念。 四、说教学重难点 在实现教学目标的过程中,教学重点是平方差公式,教学难点是平方差公式的推导与正确应用。 五、说教法和学法 为了真正实现学生的主体地位,结合本节课的内容特点和学生的年龄特征,我将采纳讲授法、练习法、自主探究等教学
3、方法。 六、说教学过程 下面重点谈谈我对教学过程的设计。 (一)导入新课 考虑到平方差公式的探究基于整式乘法,课堂伊始我会带着学生回忆才学过的整式乘法,为本节课做好学问铺垫。然后说明本节课连续学习整式乘法中的一些特别规律,顺势引出课题平方差公式。 (二)讲解新知 初中数学说课稿2 敬重的各位评委、教师: 上午好!我是(19)号说课者,今日我说课的内容是 平行四边形的判定 。所选用的教材是经全国中小学教材审定委员会,20xx年初审通过的,人教版义务教育课程,标准试验教科书。对于本节课。我将依据去年国家教育部公布的,新数学课堂标准的理念,以教什么,怎样教,为什么这样教为思路,从说教材、说教法,说学
4、法,说教学过程及教学反思等五个方面对大家介绍一下,我对本节课的理解与设计。 一、说教材 1.地位和作用 本节教材是人教版,初中数学八年级下册第 19 章第 1 节的内容,是初中数学的重要内容之一。 平行四边形 是一种重要的数学思想,在实际生活中有着广泛的应用,是初中教学的重点和难点,在教材中有举足轻重的地位。本节课所学内容,是在学习了 平行四边形的性质 的根底上,对 平行四边形的判定 进一步拓展;另一方面又为 其他四边形 的教学打下根底,做好铺垫,在教学中起着承前启后的作用。 2.教学重点和难点 本节课的重点是:平行四边形的判定定理及应用 难点是:平行四边形的判定的推导过程(这点要求比拟难)
5、我将通过问题情境的设计,课堂试验研讨,来引导学生发觉、分析和解决问题。 3.教学目标 1)把握 2)探究,由此发觉布满着探究性和挑战性。(方法与过程) 3)经过自主探究和合作沟通,敢于发表自己的观点,能从沟通中获益。(情感态度价值观) 这样制定教学目标,让学生亲身经受将实际问题抽象成数学问题,并进展理解与应用的过程,增加他们对问题的感性熟悉。通过推理论证,提高学生的理性熟悉,培育学生良好的共性品质(这包括大胆猜测、勇于探究、创新精神、坚韧的学习毅力等)。 二、说教法 情境教学法、课堂研讨法 让学生处于详细的教学情境之中,把抽象的数学学问,适当的形象化,这就相当于为学生供应一个场所,从多种感观猎
6、取信息,体验我们的数学活动。 可以从以下三方面得到体验: 1)培育学生的自学力量 2)落实学生的主体地位,促进学生的主动进展 3)为培育学生的创新意识与创新力量奠定根底 从整体课堂来看,我们这节课很关注学生的进展,古人说:“学贵有方” 三、说学法 教师传授给学生的不应只是学问内容,更重要的是,指导学生一些数学的学习方法。我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,进展学法的指导。指导学生如何将实际问题转化为数学问题,明白数学与人类的亲密关系,指导学生通过类比、猜测、推理等思维进展教学。 四、说教学过程 1阶段:创设情境、引入新课 我将敏捷运用温故而知新,承接前后章,展现情境,结合实
7、际生活,引入新课。 2阶段:新课教学(通过合作性学习进展教学。心理学讨论说明,在合作性学习中,学生不再是学习上的竞争对手,而是共同提高的合,这不仅对他们的学业会有帮忙,在人格的培育上也很有可取之处。) 3阶段:课堂实践 我将通过:首先和学生们一起议一议(平行四边形性质的简洁利用) 最终再和学生们共同完成练一练(随堂练习,根底训练、创新训练) 4阶段:课堂小结(让学生谈谈本节学到什么、收获什么,教师点评,以到达加深学问的理解) 5阶段:布置作业(到达复习稳固新学问的目的) 五、教学反思 本节课我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,培育学生的主动学习力量、动手操作力量、规律推理力
8、量等。通过课堂学习,准时发觉学生,在学习探究过程中遇到的问题,赐予指导帮忙,从而维持学生学习的积极性。以上是我对本节课的理解,缺乏之处,请各位评委教师指正。我的说课完毕,感谢大家! 初中数学说课稿3 下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章其次节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进展阐述。 一、说教材 、 教材内容:我认为可以理解为探究法则理解法则应用法则,进一步表达了新课标中“情境引入数学建模解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探究分式的乘除运算法则的过程,会进展简洁的分
9、式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简洁的实际问题。 、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有亲密的联系,也为后面学习分式的混合运算作预备,为分式方程作铺垫。 、 教学目标 学问目标:(1)、理解分式的乘除运算法则 (2)、会进展简洁的分式的乘除法运算 力量目标:(1)、类比分数的乘除运算法则,探究分式的乘除运算法则。 (2)、能解决一些与分式有关的简洁的实际问题。 情感目标:(1)、通过师生观看、归纳、猜测、争论、沟通,培育学生合作探究的意识和力量。 (2)、培育学生的创新意识和应用意识。 ()、让学生
10、感悟数学学问来源于现实生活又为现实生活效劳,激发学生学习数学的兴趣和热忱。 4、教学重点:分式乘除法的法则及应用. 5、教学难点:分子、分母是多项式的分式的乘除法的运算。 二、说教法 教学方法是我们实现教学目标的催化剂,好的教学方法经常使我们事半功倍。新课程改革中,教师应成为学生学习的引导者、合、促进者,积极探究新的教学方式,引导学生学习方式的转变,使学生成为学习的仆人。 、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。 、合作式教学,在师生公平的沟通中评价学习。 三、说学法 学生在小学就已经会很娴熟的进展分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的
11、意义,分式的根本性质等,都为本节课的学习做好了学问上的铺垫。 、类比学习的方法。通过与分数的乘除法运算类比。 、合作学习。 四、说教学程序 、类比学习,探究法则。(约3分钟) 让学生仔细思索教材上供应的”个分数的乘除法的例子(个乘法,个除法) 复习:分数的乘除法法则(抽一学生口答) 猜一猜: (a、b、c、d表示整数且在第一个式子中a、c不等于零,在其次个式子中a、c、d不等于零) 类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在其次个式子中a、c、d不等于零,a、c中含有字母) 活动目的: 让学生观看、计算、小组争论沟通,并与分数的乘除法的法则类比,让学生
12、自己总结出分式的乘除法的法则。 教学效果: 通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺当的得出分式的乘除法的法则。 2、理解法则:(约2分钟) 文字表达:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. 活动目的: 两种形式稳固对法则的理解。 教学效果: 理解法则,进一步进展学生的符号感。 3、应用:(约20分钟) (1)牛刀小试 教材74页到76页的例1、做一做、例2.我预备把例1和例2先学习了。再学习做一做。 活动目的: 抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其
13、他学生在课堂作业本上演算。教师巡查,予以辅导,反复提示学生像分数乘法一样来学习分式乘法(即类比)。 教学效果: 有的学生可能没有留意把结果化为最简分式,要提示留意,有的学生可能一边计算一边就分解因式进展约分(化简)了的,说明已经很好地与分数的乘法进展类比学习了(分数是分解因数),应当予以表扬,让全班学生仔细学习、领悟。讲评时还应当让学生理解一步的算理。 (2)“西瓜问题” 活动目的: 能解决一些与分式有关的简洁的实际问题。能有条理的进展表达。 教学效果: 通过以上例题帮忙学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种状况) 4、随堂练习。(约5
14、分钟) 76页第一题,共3个小题。 教学效果: 在总结出分式乘除法的运算步骤后,大局部学生能很好的把握,但是还有些学生遗忘运算结果要化成最简形式,教师要准时提示学生。分解因式的学问没把握好,将会影响到分式的运算,所以有的学生有必要复习和稳固一下分解因式的学问。 5、数学理解(约5分钟) 教材77页的数学理解,学生很简单消失像小明那样的错误。但是也很简单找出错误的缘由。 补充例3 计算(xyx2) 教学效果:稳固分式乘除法法则,把握分式乘除法混合运算的方法。提示学生,负号要提到分式前面去。 6、课堂小结(约3分钟) 先学生分组小结,在全班沟通,最终教师总结。 7、作业布置,凝固新知。(约2分钟)
15、 教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的) 五说板书设计 主板书采纳纲要式,一目了然。 初中数学说课稿4 依据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。 一.教材分析 1.教材的地位和作用 本节教材是初中数学8年级(下)第18章第3节其次课时的内容,函数是数学中重要的根本概念之一,也是初中数学的重要内容之一,它提醒了现实世界中数量关系之间相互依存和变化的实质,是刻画和讨论现实世界变化规律的重要模型。第18章,既是学生函数的入门,也是进一步学习
16、的根底。 作为本节内容,一方面,这是在学习了变量与函数、函数的图像的根底上,对函数意义的进一步深入和拓展;另一方面,又为学习一次函数的性质等学问奠定了根底,是进一步讨论现实世界中数量关系的工具性内容。鉴于这种熟悉,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。 2.教学重难点 依据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。 二.学情分析 从心理特征来说,初中阶段的学生规律思维从阅历型逐步向理论型进展,观看力量,记忆力量和想象力量也随着快速进展。但
17、同时,这一阶段的学生好动,留意力易分散,爱发表见解,盼望得到教师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的留意力始终集中在课堂上;另一方面,要制造条件和时机,让学生发表见解,发挥学生学习的主动性。 从认知状况来说,学生在此之前已经学习了变量与函数、函数的图像,对函数的意义已经有了初步的熟悉,这为顺当完本钱节课的教学任务打下了根底,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生肯定的困难,所以教学中应留意进展学生数形结合的思想。 三.教学目标分析 新课标指出,教学目标应包括学问与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面
18、,而这三维目标又应是严密联系的一个有机整体,学生学会学问与技能的过程同时也是学生学会学习,形成正确价值观的过程,这告知我们,在教学中应以学问与技能为主线,渗透情感态度价值观,并把这两者充分表达在过程与方法中。 1.学问与技能 理解一次函数和正比例函数的图象是一条直线,娴熟地作出一次函数和正比例函数的图象,把握k与b的取值对直线位置的影响。 2.过程与方法 经受一次函数的作图过程,探究某些一次函数图象的异同点; 3.情感态度与价值观 体会用类比的思想讨论一次函数,体验讨论数学问题的常用方法:由特别到一般,由简洁到简单. 四.教学方法分析 现代教学理论认为,在教学过程中,学生是学习的主体,教师是学
19、习的组织者、引导者,教学的一切活动都必需以强调学生的主动性、积极性为动身点。依据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采纳启发式、争论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生学问的“最近进展区”设置问题,提倡学生主动参加教学实践活动,以独立思索和相互沟通的形式,在教师的知道下发觉、分析和解决问题,在引导分析时,给学生流出足够的思索时间和空间,让学生去联想、探究,从真正意义上完成对学问的自我建构。 五.教学过程分析 新课标指出,数学教学过程是教师引导学生进展学习活动的过程,是教师和学生间互动的过程,是师生共同进展的过程。为有序、有效地进展教学,本
20、节课我主要安排以下教学环节: (一)创设情境 前面我们学习了用描点法画函数的图象的方法,下面请同学们依据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出以下函数的图象。 (1)y=-1/2x ;(2)y=-1/2x+2; (3) y=3x; (4) y=3x+2。 教学说明: 第一步、对于函数(1)应结合以前函数图像的作法具体讲解。特殊留意学生在列表取值,平面直角坐标系的正方向、单位长度,描点的正确性等学生作图的易错点。 其次步、学生自主完成函数(2)的图像。 第三步、同学们观看并相互争论,并答复:你所画出的图象是什么外形? 一次函数y=kx+b(k0)的图象是一条直线,这条直线通常
21、又称为直线y=kx+b(k0).又由于两点可以确定一条直线,所以今后画一次函数图象时只要取两点,过两点画一条直线就可以了。 第四步、学生用两点法作出函数(3)(4)的图像。 观看上面四个函数的图象,发觉它们都是直线.请同学举例对他们的发觉作出验证。 设计意图:教学应从学生已有的学问体系动身,作函数图像是本节课深入讨论一次函数y=kx+b(k0)的图象的认知根底,这样设计有利于引导学生顺当地进入学习情境。 (二)探究归纳 再观看上面四个函数的图象,也就是k、b的取值与一次函数图像位置的关系: (1) y=-1/2x+2是由直线y=-1/2x向上移动2个单位得到的;而直线y=3x+2是由直线y=3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 说课稿 15
限制150内