2023年七年级数学尖子生培优竞赛专题辅导专题03三角形的中线与面积1.pdf
《2023年七年级数学尖子生培优竞赛专题辅导专题03三角形的中线与面积1.pdf》由会员分享,可在线阅读,更多相关《2023年七年级数学尖子生培优竞赛专题辅导专题03三角形的中线与面积1.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Q 专题03三角形的中线与面积 专题解读】任三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.由“等底同髙”可知,三角形的一条中线能把这个三角形分成而积相等的两部分.利用这一性质,再进行适当拓展延伸,我们还 可解决许多其他的等分点问题.反过来,在解决许多有关多边形(如三角形、四边形等)的而积问题时,如 果我们能够快速地联想到“三角形的中线等分三角形而积“这一性质,那么往往可以事半功倍.思维索引 例1.(1)如图,ZV1BC中,D为AB的中点,E为DF的中点.作出/XAED中的髙AH:连接BF,当AH=4,DF=5时,求厶BDF面积.Q)如图,AABC 中,ZC=90,AC=12,BC
2、=9,AB=15,若动点 P 从点 C 开始,按 CA_BY 的 路径运动,且速度为每秒3个单位,设运动的时间为f秒.当t=_ 时,CP把ABC的面积分成相等的两部分;当t=5时,CP把ABC分成的两部分而积之比是 SUPC:S*BPC=_:当t=_ 时,ABPC的而积为18.例2.如图1,在ZXABC中,中线AM可以将AABC分成两个而积相等的三角形,即S好加(1)请在图2,图3中,用两种不同的方法将图中的四边形ABCD分成4个而积相等的小三角形:(2)如图4,在四边形ABCD的边上找到一点E,使得线段AE将四边形ABCD分为而积相等的两部分.图3 图4 Q 例3(1)已知:AABC中,AD
3、是BC边上的中线,P是AD 的一点,若ZVIBC的而积为阳 当点P是初的中点(即PD=片AD)时,APBC的而积=_(用含5的代数式表示):当PD=LAD时,HPBC的面积=(用含s的代数式表示):3 -当 PD=LA D时,HPBC的而积=_ (用含的代数式表示).n (2)如图.AABC的面积为2cm2.D是AB边的中点,E为AC边上一点,且AE=2EC 0为DC与 BE的交点.若DBO的面积为acnr.A CEO的而积为hem2,求ab.例4.(1)如图1,在AABD中,BE是aBD的中线,则有 SUBE=_ SZS(2)在四边形ABCD中,E是AD边上的动点,分别连接AC、BD、EB和
4、EC,设EBC的面积为$,ABC的而枳为S2,ADBC的而积为S3.如图2,当AE=-AD时,试探究S,52,S3之间的关系,并写出求解过程;其他的等分点问题反过来在解决许多有关多边形如三角形四边形等的而积问题时如果我们能够快速地联想到三角形的厶面积如图中若动点从点开始按的路径运动且速度为每秒个单位运动的时间为秒当时把的面积分成相等的两部分当时两种不同的方法将图中的四边形分成个而积相等的小三角形如图在四边形的边上找到一点使得线段将四边形分为而积Q 2 如图3,当AE=-AD(n表示正整数)时,试探究Si,S2,之间的关系.n(直接给出答案,不必求解过程)图2 其他的等分点问题反过来在解决许多有
5、关多边形如三角形四边形等的而积问题时如果我们能够快速地联想到三角形的厶面积如图中若动点从点开始按的路径运动且速度为每秒个单位运动的时间为秒当时把的面积分成相等的两部分当时两种不同的方法将图中的四边形分成个而积相等的小三角形如图在四边形的边上找到一点使得线段将四边形分为而积Q 素养提升 1.如图,在AABC中,E、F分别是AD.CE边的中点,且S:r=4cm29则为()A.cm2 B.2cm2 C.D 16c/?2 2.如图,在IWBC中E是BC上的一点,EC=2BE,点D是AC的中点,设ABC,ZBF的而积分别为 A.1 B.2 C.3 D.4 如图,三角形ABC内的线段BD、CE相交于点F,
6、已知FB=FD、FC=2FE 若ABFC的而积为2,则 四边形AEFD的面积等于()5.如图,G为ZVIBC内一点,连接AG、BG、CG并延长分别交边BC、AC.AB于点F、D、E,则把 ABC分成六个小三角形,其中四个小三角形而积已在图上标明,则AABC的面积为()A.300 B 315 C 279 D 342 6.如图,AE.BD是ABC的两条中线,AE.BD交于F,则ABEF和AFD面积的大小关系是 7.如图,AABC的中线BD.CE相交于点G,GF丄BC,且BC=5,AC=3.GF=2,则四边形ADGE 的而积是 _ 8.如图,在ABC中,点D是BC边上任意一点,点F是线段AD的中点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 七年 级数 尖子 生培优 竞赛 专题 辅导 03 三角形 中线 面积
限制150内