《小学数学新课标解读.docx》由会员分享,可在线阅读,更多相关《小学数学新课标解读.docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小学数学新课标解读小学数学新课标解读 本文关键词:新课标,小学数学,解读小学数学新课标解读 本文简介:小学数学新课标解读1、双基指基础学问和基本技能。2、新的数学课程的基本内容包括:重要的数学学问,基本的数学思想方法和必要的应用技能。3、课程标准抛弃了将数学学习内容分为“数与计算,量与计量,几何初步学问,应用题,代数初步学问,统计初步学问”六个方面的传统做法,构建了“数与代数,空间与图形,统计与概率小学数学新课标解读 本文内容:小学数学新课标解读1、双基指基础学问和基本技能。2、新的数学课程的基本内容包括:重要的数学学问,基本的数学思想方法和必要的应用技能。3、课程标准抛弃了将数学学习内容分为
2、“数与计算,量与计量,几何初步学问,应用题,代数初步学问,统计初步学问”六个方面的传统做法,构建了“数与代数,空间与图形,统计与概率,、实践和综合应用”。4、课程标准中增加的内容包括:统计与概率的有关学问,空间与图形的有关内容,数与代数的有关内容。删减的主要内容:过时的失去学习价值的学问,一些繁杂的大数目计算,以及类型化的应用题。5、提升的内容有:估算、算法多样化、各类学问的应用等。降低的内容有:较大数目得整数、多位小数和分数的四则运算,整除、约数和倍数、素数和合数。6、课程标准中加强的内容有:数感与空间感、理解运算的意义、选择适当的运算的策略与工具、加强口算与估算、体会与理解的模式与关系、相
3、识事物与图形的位置与改变、把统计与概率作为一个重要内容、加强数据的搜集整理分析与运用、加强实践与综合应用、重视计算器的运用。7、减弱的内容有:淡化繁杂的计算、降低笔算的要求、不独立设置“应用题”单元、取消对应用题的人为分类。8、新的数学课程有以下特点:片段化、过程化、现代化。9、其次学段的教学建议:让学生在现实情境中体验和理解数学。激励学生独立思索,引导学生自主探究、合作沟通。加强估算,激励解决问题策略的多样化。重视培育学生应用数学的意识和实力10、数学课程的教化理念是:一、突出基础性、普及性和发展性,面对全体学生。1.人人学有价值的数学;2、人人都能获得必要的数学;3、不同的人在数学上得到不
4、同的发展。二、为其他科学供应语言、思想和方法。三、满意数学学习方式的多样性。四、老师是教学活动的组织者、引导者和合作者。五、教学评价的多元化。六、运用现代信息技术。(树立“育人为本”的教化观,“人才多样化,人人能成才”的人才观,“德智体美全面发展”的教化质量观,“为学生一生的发展河华蜜奠定基础”的教化价值观。)11、数学课标的价值取向:是真正面型“人的”课程;是构建美妙“人性”的课程;是指向“真是生活”的课程。12、传统数学课程更强调规格和结果,新的数学课程则更突出阅历与过程,即所谓的“做数学”、“数学化”。13、新课标的四类分类目标是:学问与技能、数学思索、解决问题、情感与看法。14、解决问
5、题不同于解题。解决问题的起点是现实生活情境,问题由自己提出,方法由自己选择:解题的起点是人们事先已经编制完成的题目,重在套类型,仿照例题的解答模式。在解决问题的过程中,积累的是生活的阅历、与人相处的策略和解决问题的一般实力,这是解题所不能做到的。解读新课标(一)一、数学课程应致力于实现义务教化阶段的培育目标,体现基础性、普及性和发展性。义务教化阶段的数学课程要面对全体学生,适应学生特性发展的须要,使得:人人都能获得良好的数学教化,不同的人在数学上得到不同的发展。人人都能获得良好的数学教化:良好的数学教化,就是不仅懂得了学问,还懂得了基本思想,在学习过程中得到磨练。义务教化阶段的数学课程具有公共
6、基础的地位,要着眼于学生的整体素养的提高,促进学生全面、持续、和谐发展。课程设计要满意学生将来生活、工作和学习的须要,使学生驾驭必需的数学基础学问和基本技能,发展学生抽象思维和推理实力,培育应用意识和创新意识,在情感、看法与价值观等方面都要得到发展;要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习爱好;要在呈现作为学问与技能的数学结果的同时,重视学生已有的阅历,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。不同的人在数学上得到不同的发展:现代儿童观认为,在每一个儿童身上都隐藏着巨大的教化潜能,我们的教化必需充
7、分敬重儿童的内在素养,即自然天性,当心加以呵护、开发。要面对每一个有差异的个体,适应每一个学生不同发展的须要,要为每一个学生供应不同的发展机会与可能。数学课程必需立足于关注学生的一般发展,它应当是“为了每一个孩子”健康成长的课程,而不能成为特地用来淘汰的“筛子”。教学实践:了解并驾驭不同家庭中的孩子在家庭和学校中的学习状况,充分了解学生的学习起点,创设多元智能的环境,把握“为多元而教”和“用多元而教”的原则,革新学习的方式,开发与应用“多维”学习活动的教学资源,创设一个适合儿童生活和学习的“聪慧环境”,整合教化资源,形成新的合力,让每一个儿童的创建潜能在学习中得到开发,让每一个儿童的多元智能得
8、到培育,最大限度地激发学生实现自我的愿望和学习的最优化。“教学的艺术不在于传授本事,而在于激励、唤醒、鼓舞。”恰当的评价将拉近师生的情感,使老师由一名评判者变成学生的激励者和支持者,使学生得到敬重,使每个孩子都能从学习中体会到欢乐和胜利的喜悦。建立一套全方位的多元化的科学的评价体系,是开发与实施多维学习的有力保障。解读新课标(二)二、课程内容既要反映社会的须要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容要贴近学生的生活,有利于学生阅历、思索与探究。内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与学问系统
9、性的关系。课程内容的呈现应留意层次化和多样化,以满意学生的不同学习需求。1、它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。数学是探讨数量关系和空间形式的科学。学生学数学与不学数学最本质的区分在于培育人直观的实力、演绎的实力、逻辑地思索!其实就是以数学学问为载体促进学生思维的发展。这是数学学习的本质。数学学问和数学思想方法就是数学的核心。近几年来出现的“去数学化”倾向就是忽视了数学学问本源和数学思想方法。究其缘由是因为过于关注形式,淡化了本质。抓住数学学问本源和数学思想方法,与新课程理念所提倡的理念有机整合,订正“去数学化”倾向,还数学教学原来面目!(一)把根留住追溯数学本源:
10、小学数学中的数学学问本源与数学思想方法;化归思想、优化思想、符号化思想、集合思想、函数思想、极限思想、分类思想、概率统计思想等;归纳与演绎,分析与综合,抽象与概括,联想与猜想等方法。2.抓住数学学问本源与数学思想方法的意义与价值。(二)凸显本色还数学教学本色1.针对详细的数学学问,知道学问本源和蕴含在学问背后的数学思想方法。(1)通过数学史的学习了解数学学问产生的背景和发展的过程,知道来龙去脉,也就把握了学问本源和数学思想方法。(例如:向学生介绍十进制计数法的由来)(2)深化挖掘教材,教材的编排蕴含了学问的本源和思想方法。(例如圆面积推导里无限分割的极限思想的渗透。)2.在实践中怎样以数学学问
11、本源与数学思想方法为主线绽开教学设计。在学问的发生过程中要抓住学问本源,突出学问的产生与形成过程。让学生处于需求新知的状态创设的问题情境要蕴含数学学问的本源让学生处于解决问题的状态探究的过程中要有思索学问本源的任务(以1010以内数的相识一课为例,来阐述是怎样抓住数学学问本源进行教学设计的。这部分学问的本质是位值制、进位法、符号化思想。)(2)在法则归纳、公式推导、结论的发觉过程中以思想方法为主线,凸显思索过程。围绕一种数学思想方法为主线绽开教学(平行四边形面积的推导转化)围绕多种数学思想方法为主线绽开教学(三角形内角和的推导猜想、验证、转化等)结合某个点渗透数学思想方法总之,学问是基础,方法
12、是中介,思想才是本源。有了思想,学问与方法才能上升为才智。数学是能够增长学生才智的学科,我们只要抓住数学本质,与新课程理念有效结合,才能发挥数学教化的最大价值,凸显数学本色!这样做本身就是使数学课回来数学味,找回数学教学的灵魂!2、课程内容要贴近学生的生活,有利于学生阅历、思索与探究。数学学习要以学生的发展为本,要把学生的个人学问、干脆阅历和现实世界作为数学教学的重要资源。我们的学生就是一个个资源开发者,学生自身的学问、阅历、智力、情感等因素,构成了学生内在的“资源”,一个学生就是一个独特的“资源点”。“心中有学生、眼中有资源”。数学是来源于生活而最终服务于生活的,尤其是小学数学,在生活中几乎
13、都能找到其原型。贴近学生的生活的资源,可以将学生的那些常识性、阅历性的学问派上用场,在数学世界里开拓出可供他们思索、探讨和发展的用武之地。老师应把握学生的现实阅历,并对之进行分析、澄清、引导、回应,从而实现学生对学问创建性转换和沟通、交融的过程。这样的一个过程,可以看作儿童关于学问的原有基础的发展或转变,而不是新信息的点滴累积过程。3、内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与学问系统性的关系。过程与结果的关系:这个过程大体上包括:发觉实际问题中的数学成分,并对这些成分做符号化处理,把一个实际问题转化为数学问题;对符号化的问题做进一步的抽象化处理,尝试建立和运用不同
14、的数学模型,发展为更完善、合理的概念框架。过程和结果同样重要。应当强调:结果应当是学生通过肯定的探究过程获得的,不是老师干脆传授的。重“过程”中的发觉、感悟、体验,同样也应兼顾过程之后出的“结果”。重视儿童在活动过程中的看法、情感、行为表现,重视儿童活动中付出努力的程度,以及过程中的探究、思索、创意等。即使活动的最终结果没有达到预期的目标,也应从儿童体验珍贵生活阅历的角度加以珍视。两大目标,既各有内涵,又相辅相承。在实施过程中,要辩证地处理两者的关系,那种不注意学习过程而侈谈学问和技能的获得是不行取的;同时,情感、看法、价值观的形成也不应脱离学问技能,它们是与学问的驾驭、技能的获得紧紧地融在一
15、起的。直观与抽象的关系:重视直观演示和归纳抽象:老师在教学活动中,应从直观入手揭示事物的特征及数量关系,引导学生通过分析、归类、综合等方法进行抽象概括,从而得出正确的结论。如在教学“加法”概念时,老师可先进行直观演示:岸边有只鸭子,水里有个鸭子。水中的鸭子缓缓游向岸边。问学生岸边一共有几只鸭子?通过简洁、生动的演示,引导学生抽象出“把两个数合并起来求一共是多少的计算叫加法”这一概念。处理好直观性与抽象性的关系:直观是手段,抽象是直观的发展。不能从抽象到抽象,使学生难以理解教学内容,也不能为直观而直观,把教学仅仅停留在直观演示上,而是在加强直观演示的基础上,帮助学生归纳出事物的本质特征及数量关系
16、。随着学生年级的上升,抽象思维实力的增加,可渐渐削减学生对直观演示的依靠性,提高学生的抽象思维实力。生活化、情境化与学问系统性的关系:生活化是指将抽象的数学学问、方法以生活原型、现实情境的方式呈现,让学生在感爱好、已有的生活阅历的基础上建构自己的认知体系。要求数学教学从生活中、从学生已有的现实背景动身,捕获贴近学生的生活素材,选取学生生活中熟识的人、事、物等数学实例,挖掘数学原型,让学生体会到数学的生动好玩,从而激发学习的爱好。情境化:从数学学习的认知本质看,数学学习离不开情境。事实上,学生学习学问的过程本身是一个建构的过程,无论是对学问的理解,还是学问的运用,都离不开学问产生的环境和适用的范
17、围。也就是说,学习中的建构过程总是与学问赖以产生意义的背景及环境关联在一起的,即学问与学习总是具有情境性的。注意情境化设计,加强数学与学生生活的联系,就成为数学课程及课堂教学改革的一个重要的切入点。学问系统性:数学学问本身具有严谨性、系统性。就小学生的数学学习而言,数学化也可以说成是引导学生亲身经验将实际问题抽象成数学模型的过程。生活化、情境化的最终目的是超诞生活(生活数学)并上升到“数学模型”(书本数学)。教学实践:“问题情境建立模型说明,应用与拓展”教学模式三点留意:从“生活阅历”动身而非从“生活情境”动身,就来源看,后者一般是数学问题的现实生活素材,而前者除了可以来自现实生活外,也可以来
18、源于数学自身和探究中引发的新的情境,即数学情境并不局限于现实生活素材;应杜绝重形式不求实质的数学情境化设计,不要因关注“生活味”而忽视本质的“数学化”过程;不是全部的数学学问都要追求“生活化”,都成追求“生活化”。4、课程内容的呈现应留意层次化和多样化,以满意学生的不同学习需求(因材施教原则)。直面学生的差异是一个永恒的话题,我们应当直面孩子的差异,承认孩子的特性,发展孩子的特性,给孩子供应机会让他们把自己独特的特性呈现出来。设计有差异的课程,实施有差异的教学,获得有差异的评价,意义就变得极为重大。构建弹性化的课程体系。依据孩子不同的发展须要和学习需求,建立多元化、有层次、可选择的课程体系,以
19、老师给学生“配餐”和学生自己“点菜”等方式,使每一位学生拥有一份特性化的学习过程,在营造一个敬重孩子特性的开放的学习环境中,根据“不同学生不同特性不同选择不同教学”的操作思路,让学生自我选择,让“腿长”跑得快、“肚子大”的学生都能吃得饱。通过敬重学生的选择,营造课堂的和谐氛围,给学生以更大的学习自主权。直面差异,构建差异性课堂。直面孩子的差异,对影响课堂教学的要素进行弹性设计,教学目标弹性设置;课程内容弹性处理;课堂组织敏捷多变;作业有难有易;关注孩子自主选择,评价特性化、动态化、多元化,注意因材施教,注意教学内容的多元性与层次渐进的结合,注意教学中的可操作性和敏捷性,营造课堂的和谐氛围,促进
20、学生和谐发展。解读新课标(三)三、数学活动是师生共同参加、交往互动的过程。有效的数学教学活动是老师教与学生学的统一,学生是数学学习的主体,老师是数学学习的组织者与引导者。1.数学教学过程是老师引导学生进行数学活动的过程数学活动是学生经验数学化过程的活动。也就是老师引导学生亲身经验将实际问题抽象成数学模型的过程。数学活动是学生自己建构数学学问的活动。数学学习是学生自己建构数学学问的活动,在数学活动过程中,学生、教材及老师产生交互作用,形成数学学问、技能和实力,发展情感看法和思维品质。在此过程中学生应当是主动探究学问的“建构者”,决不是仿照者。但是离不开老师的价值引领。2.数学教学过程是老师与学生
21、之间互动的过程。学生是数学学习的主体,老师是数学学习的组织者与引导者。老师角色转变的重心在于使传统意义上的老师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。组织者的含义包括组织学生发觉、找寻、搜集和利用学习资源、组织学生营造和保持教室中和学习过程中主动的心理氛围等;引导者的含义包括引导学生设计恰当的学习活动,引导学生激活进一步探究所需的从前阅历,引导学生围绕问题的核心进行深度探究、思想碰撞等;此外,老师还应与学生建立人道的、和谐的、民主的、同等的师生关系,让学生在同等、民主、和谐的氛围中学习。3.数学教学过程是师生共同发展的过程教学过程促进了学生的发展。包括学问与技能、
22、数学思索、问题解决和情感看法四个方面。教学过程促进了老师本身的成长。老师应在教学过程中用于实践、不断加深对数学规律的相识,努力形成自己的教学艺术;数学教学过程不再是机械地执行教材的过程,而是师生从实际动身,共同开发课程和丰富课程的过程,教学真正成为师生富有特性化的创建过程。四、数学教学活动必需激发学生爱好,调动学生主动性,引发学生思索;要注意培育学生良好的学习习惯、驾驭有效的学习方法。学生学习应当是一个生动活泼的、主动地和富有特性的过程,除接受学习外,动手实践、自主探究与合作沟通也是数学学习的重要方式,学生应当有足够的时间和空间经验视察、试验、揣测、验证、推理、计算、证明等活动过程。老师教学应
23、当以学生的认知发展水平和已有的阅历为基础,面对全体学生,注意启发式和因材施教,为学生供应充分的数学活动的机会。要处理好老师讲授和学生自主学习的关系,通过有效的措施,启发学生思索,引导学生自主探究,激励学生合作沟通,使学生真正理解和驾驭基本的数学学问与技能、数学思想和方法,得到必要的数学思维训练,获得广泛的数学活动阅历。数学教学活动必需激发学生爱好,调动学生主动性,引发学生思索儿童贪玩好动,好问新奇,好胜上进,这成为儿童欢乐生活的本质。儿童世界充溢童心、童真、童趣,儿童文化是一种诗性文化,须要激情,也须要活力。活动的学习充溢着想象的色调,奇丽、奇妙,经常能带领孩子走进一个充溢无限遐想空间的学习世
24、界。因此,真正适合儿童的学习,应当是一种“活的学习”,一种能从内心深处唤醒儿童沉睡的想象力和激情的学习。要注意培育学生良好的学习习惯、驾驭有效的学习方法。良好的学习方法、有效的学习方法对促进学生学习,培育学生终身学习实力具有重要的作用。学生只有具有良好的学习习惯、驾驭有效的学习方法,变“学会”为“会学”,才能体验到学习的乐趣,激发出自身的潜能,提高学习质量与效益。数学学习方法是指学生接受和巩固数学学问、形成数学实力,解决数学问题的途径和程序。它包含智力因素与非智力因素,具有深刻的内涵与广泛的外延。有效的数学方法与习惯,是指凭借阅历产生的、根据数学教化目标要求驾驭的、比较长久的实力或倾向改变所实
25、行的方法和所实行的习惯,包括:有意义、有组织了解信息的方法;有效地对原有学问和现有学问的加工和再加工的方法;有效到进行学问迁移的方法。学生学习应当是一个生动活泼的、主动地和富有特性的过程,除接受学习外,动手实践、自主探究与合作沟通也是数学学习的重要方式,学生应当有足够的时间和空间经验视察、试验、揣测、验证、推理、计算、证明等活动过程。学习方式是多元的,除接受学习外,动手实践、自主探究与合作沟通也是数学学习的重要方式。有意义的接受学习(下简称接受学习)是指学习内容已经以定论形式展示,不须要学生去独立探究和发觉,只要从自己原有认知结构中检索与新学问具有实质性联系的固定点,使之相互作用,实行新学问意
26、义上的同化,从而扩大或改组认知结构。探究学习不呈现学习结论,而是让学生通过对肯定材料的试验、尝试、推想、思索,去发觉和探究某些事物间的关系、规律。探究学习和接受学习各有其功能。探究学习比较开放,它更重视学生学习动机和独立思索,更强调过程,注意创新实力的培育。接受学习可以在较短的时间内让学生吸取更多的信息,但是它必需具备两个条件,一是学习材料对原认知结构具有实质性的、非人为的联系,二是学习者必需具备这种学习的心向。假如同时具备这内外两个条件,同样能激起学习的主动性和主动性。探究学习与接受学习各司其职,两者不行偏废。选择合适的学习方式,要依据教学内容的特点、依据教学对象的特点,要依据教学状况刚好调
27、整,应留意多种学习方式的综合应用,不断丰富学生的学习方式。老师教学应当以学生的认知发展水平和已有的阅历为基础,面对全体学生,注意启发式和因材施教,为学生供应充分的数学活动的机会。“学习”不是简洁的信息积累,是新旧学问、阅历的相互作用,及由此而引发的认知结构的重组。教学不是学问的传递,而是学问的处理和转换。借助生活阅历:主要是指利用学生的生活实际和所熟识的事物及实例,从详细的感知引出数学学问。借助学问阅历:主要是指利用学生已驾驭的数学学问引出问题,暴露学生的前概念,引发认知冲突。数学学问之间有着特别亲密的联系,很多新学问是建立在已有学问的基础上,是旧学问的延长和发展。教学实践:找准学生学习的现实
28、起点必需以老师理念更新为前提;全面精确地把握学生学习的现实起点(作业分析、课前调查、问卷调查和课前谈话);建立生活阅历与学习材料的适当联系,提高学习活动的效率;实事求是地进行教学设计,落实教学目标。要处理好老师讲授和学生自主学习的关系,通过有效的措施,启发学生思索,引导学生自主探究,激励学生合作沟通,使学生真正理解和驾驭基本的数学学问与技能、数学思想和方法,得到必要的数学思维训练,获得广泛的数学活动阅历。学生的自主学习并不排斥老师的细心讲析,自主学习教学模式接纳全部的教学方法来促使学生自主地学习。学生在认知活动中,由于缺乏背景学问或认知策略陷于逆境时,老师就必需给以讲解点拨。该告知的不妨告知;
29、只是以怎样的方式“告知”,却是一门艺术。一方面,有些规定性的学问须要老师干脆告知,学生的自主学习主要体现在如何通过数学活动理解数学学问。尽管还是“告知”,但此时的“告知”已不是简洁意义上的“告知”。学生在老师细心组织的数学活动中,边视察、边操作、边想象,多种感观协同作用。另一方面,自主学习构建着非直线性的教学路径,预示着学习过程是生成的,课堂中产生的生成信息是多元的、丰富的,但从另一个角度理解也是杂乱,这些信息中有些是有价值、有意义的,比如涉及学科本质能激发学生再探究的信息,呈现学生独特思维和良好学习方法的信息,与学生详细学习、生活阅历相联系的体现他们真实感悟的信息等,但有些却是没有价值的。这
30、些生成信息须要老师以倾听、视察等丰富的体态语言,以亲身介入、讲解等方式去捕获推断信息,去刚好赐予相应的反馈。当课堂闪烁灵性、出现差错、活动结束、出现迷失时,老师应刚好引导,赐予正确价值引领。解读新课标(四)五、学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生的学习和改进老师的教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与看法,帮助学生相识自我,建立信念。六、信息技术的发展对数学教化的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应依据实际状
31、况合理地运用现代信息技术,要留意信息技术与课程内容的有机结合。要充分考虑计算器、计算机对数学学习内容和方式的影响以及所具有的优势,大力开发并向学生供应丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于变更学生的学习方式,使学生乐意并有更多的精力投入到现实的、探究性的数学活动中去。设计思路(一)关于学段为了体现义务教化数学课程的整体性,标准统筹考虑了九年的课程内容。同时,依据儿童发展的生理和心理特征,将九年的学习时间详细划分为三个学段:第一学段(1-3年级)、其次学段(4-6年级)、第三学段(7-9年级)。(二)关于目标标准提出义务教化阶段数学课程的总体目标和分学段目标
32、,并从学问技能、数学思索、问题解决、情感看法等四个方面详细阐述。标准用了“了解(相识)、理解、驾驭、运用”等认知目标动词表述学问技能目标的不同水平。依据“基本理念”,数学学习必需注意过程,标准运用“经验(感受)、体验(体会)、探究”等认知过程动词表述学习活动的不同程度。运用这些动词进行表述是为了更精确地刻画上述四个方面的详细目标。在标准中,这些动词的详细含义如下。了解(相识):从详细事例中知道或举例说明对象的有关特征;依据对象的特征,从详细情景中分辨或者举例说明对象。理解:描述对象的特征和由来,阐述此对象与相关对象之间的区分和联系。驾驭:在理解的基础上,把对象用于新的情境。运用:用已驾驭的对象
33、,选择或创建适当的方法。经验(感受):在特定的数学活动中,获得一些感性相识。体验(体会):参加特定的数学活动,相识或验证对象的特征,获得阅历。探究:独立或与他人合作参加特定的数学活动,发觉对象的特征及其与相关对象的区分和联系,获得理性相识。(三)关于学习内容在各个教学段中,标准支配了四个方面的内容:“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”。1.数与代数“数与代数”的主要内容有:数的相识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算实力,树立模型思想。理解意义
34、,培育数感认数教学以理解数的意义为重点。让学生理解数的意义,建立正确的数的概念一般有两个角度:一是从数的组成去建构;二是联系实际来体会。数感须要培育。数感与具有数学学问的多少、理解数学学问的程度有关,便更多地表现为应用数与运算的看法和意识。假如把抽象的数学学问与详细的图形结合起来,挖掘和利用概念中的直观成分,能有效降低教学难度。核心概念数感:数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。建立“数感”有助于学生理解现实生活中数的意义,理解或表述详细情景中的数量关系。主要表现在:理解数的意义;能用多种方法来表示数;能在详细的情境中把握数的相对大小关系;能用用来表
35、达和沟通信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出说明。教学实践:在数概念教学中重视数感的培育:通过体验、视察、估计,获得数感的启蒙;引导用数学方法思索,建立数感学生学会数学地思索问题,用数学的方法理解和说明实际问题,能从现实的情境中看问题;联系数意义的现实应用,培育数感了解数在现实生活中的应用,有助于学生体会数的意义,建立数感。在数运算教学中发展数感结合详细问题选择恰当算法、强化数感(学习运算是为了解决问题,而不是单纯为了计算);在现实情境中把握运算意义、深化数感;符号意识:指能够理解并且运用符号表示数、数量关系和改变规律;知道运用符号可以进行一般性的运算和推
36、理。建立“符号意识”有助于学生理解符号的运用是数学表达和进行数学思索的重要形式。详细表现在:能从详细情境中抽象出数量关系和改变规律,并用符号来表示;理解符号所代表的数量关系和改变规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。教学实践:经验从详细的事物学会特性化的符号表示学会数学地表示要精确假设学习主体的实力,把握学生已有的学问和阅历积累,唤醒符号意识,由此作为发展的生长点。(例如:找规律)留意学习方式的转变,通过创设情境,让学生尝试解决问题,通过个体自主视察、思索、群体沟通、探讨、辨析,逐步建构,实现逐步优化。(用字母表示数:青蛙儿歌)学习内容的拓展,供应相匹配的材料
37、,敏捷地把握教学目标。(例如:汽车运行图)解读数学新课标(五)运算是“数与代数”的重要内容,运算是基于法则进行的,通常运算满意肯定的运算律。学习这些内容有助于理解运算律,培育运算实力。把握基本冲突走向有效教学在口算教学中,除了让学生理解算理、驾驭算法,还要注意口算训练的科学合理性。基本算法并不是唯一的算法,基本算法应当是指同一思维层次上的方法群。多数学生喜爱的方法,老师易教,学生易学的方法,对后续学问的驾驭有价值的方法,是最志向的基本算法。在算理直观与算法抽象之间应当架设一座桥梁,让学生装在充分体验中逐步完成由动作思维向形象思维,再向抽象思维的发展过程。理解算理和驾驭算法不行偏颇:典型算法(包
38、括典型错例)的呈现应当全面完整;情景图、旧方法和新算法之间的沟通应当刚好有效;新算法的练习有肯定的时间和肯定的量。算法多样化和算法最优化的处理理解算法多样化与算法最优化的内涵:算法多样化包括计算方法和解题策略的多样性。多样化是指群体的多样化,是学生不同特性和不同思维结果的呈现;优化是指个体的优化,它是多种方法的比较中所产生的相对性。找准算法多样化的前提:实施算法多样化也是有前提的,各种不同算法要建立在思维等价的基础上,否则多样化就会导致泛化。以学生思维凭借的依据看,可以分为基于动作的思维、基于形象的思维、基于符号与逻辑的思维。明显这三种思维并不在同一层次上,不在同一层次上的算法就应当提倡优化,
39、而且必需优化,只是优化的过程应是学生不断体验与感悟的过程,而不是老师强制规定和主观臆断的过程,应让学生逐步找到适合自己的最优算法。实现算法多样化的途径:实现算法多样化,须要自主探究、合作沟通的方式;实现算法多样化,须要老师有创建性开发课程资源的意识(关键在于如何将静态的文本变为动态的材料)把握算法优化的标准:随着学习内容的发展,逐步引导学生调整算法;敬重不同算法,不等于不能强化最优的方法,不能无原则放任低思维层次的算法。引导学生驾驭基本算法:基本算法并不是唯一的算法,基本算法应当是指同一思维层次上的方法群。多数学生喜爱的方法,老师易教,学生易学的方法,对后续学问的驾驭有价值的方法,是最志向的基
40、本算法。不要混淆规则和算法的关系:规则具有规律性、普遍性,它是数学学习的核心,是解决问题的学问储备,算法是解决问题的详细策略,它具有情境性、个体性。估算的教学(一)注意学生估算意识的培育。1.老师要注意估算,并把估算意识的培育作为重要的教学目标;2.要选好题目,提出好问题,让学生去体会估算的必要性;3.要激励学生利用估算来验证计算结果,养成好习惯;4.要引导学生在问题情景的对比中,选择估算或精确计算,不断地积累阅历。(二)让学生在感受估算的价值中学会估算的策略和方法。1.激励学生说明估算的理由和思路;2.老师要主动地引导学生进行二次反思与调整;3.老师要帮助学生在实践中不断总结估算的策略,不断
41、提高估算的实力。(三)对学生的估算作适度的评价。1.依据实际问题,选择合理的估算策略,结果合理方为正确;2.脱离实际问题情境,纯试题的估算,只要结果落在区间内,方为正确。但要依据不同年龄的学生的认知实际,赐予针对性的评价;3.估算结果落在合适的数量级中,方为正确。计算教学的一般教学流程:创设情境,探究算法沟通算法,理解算理练习巩固,驾驭算法模型也是“数与代数”的重要内容,方程、方程组、不等式、函数等都是基本的数学模型。这些内容有助于培育学生的学习爱好和应用意识,体会数学建模的过程,树立模型思想。从现实生活或者详细情境中抽象出数学问题,是建立模型的动身点;用符号表示数量关系和改变规律,是建立模型
42、的过程;求出模型的结果并探讨结果的意义,是求解模型的过程。数学建模就是从详细的数学问题情境中运用数学符号语言加以概括与提升,使之简约化与精确化的过程。建模过程:近似、概括、抽象实际问题(现实原型)数学化数学模型(方程、函数等)-(用数学理论探讨解决数学问题)-数学模型的解答-(检验)-原始问题的解答回到实际问题解读新课标(六)2.图形与几何“图形与几何”主要内容有:空间和平面的基本图形,图形的性质和分类;平面图形基本性质的证明;图形的平移、旋转、轴对称、相像和投影;运用坐标描述图形的位置和图形的运动。核心概念:空间观念是指依据物体特征抽象出几何图形,依据几何图形想象出所描述的实际物体;能够想象
43、出空间物体的方位和相互之间的位置关系;依据语言描述或通过想象画出图形等。主要表现在:能由实物的形态想像出几何图形,由几何图形想像出实物的形态,进行几何体与其三视图、绽开图之间的转化;能依据条件做出立体模型或画出图形;能从比较困难的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和改变;能采纳适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思索。空间观念的培育:强调内容的现实背景,联系学生的生活阅历和活动阅历,展示丰富多彩的几何世界,注意二维与三维的相互转换,教学内容要有现实的、有意义的、富有挑战性。敏捷运用多元的学习方式,重视实践操作、
44、测量,经验视察、试验、猜想、证明等数学活动,突出探究性活动,使学生亲历“做数学”的过程。加强几何建模以及探究过程,强调几何直觉,培育空间观念。(注意学生经验从实际背景中抽象出数学模型、从现实的生活空间中抽象出几何图形的过程,注意探究图形性质及其改变规律的过程。)突出现代教化技术的作用,有效突破教学难点,丰富学生的直观体验,获得感性相识。突出文化价值。例如七巧板材料的合理运用。几何直观是指利用图形描述几何或者其他数学问题、探究解决问题的思路、预料结果。在很多状况下,借助几何直观可以把困难的数学问题变得简明、形象。几何直观不仅在“图形与几何”的学习中发挥着不行替代的作用,并且贯穿在整个数学学习中。
45、推理是数学的基本思维方式,也是人们学习和生活中常常运用的思维方式,因此,与直观一样,推理也贯穿在整个数学学习中。推理一般包括合情推理和演绎推理。合情推理是从已有的事实动身,凭借阅历和直觉,通过归纳和类比等推想某些结果,是由特别到一般的过程。演绎推理是从已有的事实(包括定义、公理、定理等)动身,根据规定的法则(包括逻辑和运算)验证结论,是由一般到特别的过程。在解决问题的过程中,合情推理有助于探究解决问题的思路、发觉结论;演绎推理用于验证结论的正确性。推理实力的表现:能通过视察、试验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清楚、有条理地表达自己的思索过程,做到言之有理、
46、落笔有据;在与他人沟通的过程中,能运用数学语言合乎逻辑地进行探讨与质疑。推理实力的培育:把推理实力的培育有机地融合在数学教学的过程中;推理实力的培育落实到各个领域之中;通过学生熟识的生活情境发展学生的推理实力;培育学生的推理实力,要留意层次性和差异性。一个凸显数学本质的教学领域“探究规律”备课解读与难点透视探究规律作为小学数学学问结构的部分,也须要系统的眼光,构建一个适合学生学习的序列。从在一个单位时间设计一个教学活动的教学角度看,教材的编写和课堂教学设计都是选择的艺术。教学目标的多元化也促使教学时要更注意效率。3.统计与概率“统计与概率”主要内容有:收集、整理和描述数据,包括简洁抽样、记录调
47、查数据、描绘统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简洁的推断。简洁随机事务及其发生的概率。核心概念:数据分析包括:了解在现实生活中有很多问题应当先做调查探讨、收集数据,通过分析作出推断,体会数据中是蕴涵着信息的;体验数据是随机的和有规律的,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发觉规律;了解对于同样的数据可以有多种分析的方法,须要依据问题的背景选择合适的方法。统计观念:能从统计的角度思索与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,相识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。统计观念的培育:使学生经验统计活动的全过程(观念的建立须要人们亲身的经验,最有效的方法是让他们真正投入到统计活动的全过程中:提出问题、收集数据、整理数据、分析数据、作出决策、进行沟通、评价与改进,从“有所体验经验从事”。使学生在现实情境中体会统计对
限制150内