高三数学必修五教案《等差数列》(优秀4篇)_1.docx
《高三数学必修五教案《等差数列》(优秀4篇)_1.docx》由会员分享,可在线阅读,更多相关《高三数学必修五教案《等差数列》(优秀4篇)_1.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学必修五教案等差数列(优秀4篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。读书破万卷下笔如有神,下面虎知道为您精心整理了4篇高三数学必修五教案等差数列,希望能够给您提供一些帮助。数学等差数列教案 篇一 设计思路 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两
2、种方法通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。 教学过程: 一、片头 (30秒以内) 前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列等差数列。本节微课重点讲解等差数列的定义, 并且能初步判断一个数列是否是等差数列。 30秒以内 二、正文讲解(8分钟左右) 第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒 第二部分内容:给出等差数列的定义及其数学表达式50 秒 第三部分内容:哪些数列是等差数列?并且求出首项与公差。根据这个练习总结出几个常用的结152秒 三、结尾 (30秒以内
3、)授课完毕,谢谢聆听!30秒以内 自我教学反思 本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。 数学等差数列教案 篇二 教学目标 1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。 2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习
4、,培养学生分析问题解决问题的能力。 3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。 教学重难点 1、教学重点:等差数列的概念的理解,通项公式的推导及应用。 2、教学难点: (1)对等差数列中“等差”两字的把握; (2)等差数列通项公式的推导。 教学过程 一。课题引入 创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子) 二、新课探究 (一)等差数列的定义 1、等差数列的定义 如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的
5、公差,通常用字母d来表示。 (1)定义中的关健词有哪些? (2)公差d是哪两个数的差? (二)等差数列的通项公式 探究1:等差数列的通项公式(求法一) 如果等差数列首项是,公差是,那么这个等差数列如何表示?呢? 根据等差数列的定义可得: 因此等差数列的通项公式就是:, 探究2:等差数列的通项公式(求法二) 根据等差数列的定义可得: 将以上-1个式子相加得等差数列的通项公式就是:, 三、应用与探索 例1、(1)求等差数列8,5,2,的第20项。 (2)等差数列-5,-9,-13,的第几项是401? (2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,
6、实质上是要求方程的正整数解。 例2、在等差数列中,已知=10,=31,求首项与公差d. 解:由,得。 在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。 巩固练习 1、等差数列an的前三项依次为a-6,-3a-5,-10a-1,则a=( )。 2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。 四、小结 1、等差数列的通项公式: 公差; 2、等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量; 3、判断一
7、个数列是否为等差数列只需看是否为常数即可; 4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。 五、作业: 1、必做题:课本第40页习题2.2第1,3,5题 2、选做题:如何以最快的速度求:1+2+3+???+100= 2.2.1等差数列学案 数学等差数列教案 篇三 一、预习问题: 1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。 2、等差中项:若三个数 组成等差数列,那么A叫做 与 的 , 即 或 。 3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数
8、列; 时,数列为常数列;等差数列不可能是 。 4、等差数列的通项公式: 。 5、判断正误: 1,2,3,4,5是等差数列; ( ) 1,1,2,3,4,5是等差数列; ( ) 数列6,4,2,0是公差为2的等差数列; ( ) 数列 是公差为 的等差数列; ( ) 数列 是等差数列; ( ) 若 ,则 成等差数列; ( ) 若 ,则数列 成等差数列; ( ) 等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( ) 等差数列的公差是该数列中任何相邻两项的差。 ( ) 6、思考:如何证明一个数列是等差数列。 二、实战操作: 例1、(1)求等差数列8,5,2,的第20项。 (2) 是不是等差数
9、列 中的项?如果是,是第几项? (3)已知数列 的公差 则 例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗? 例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。 数学等差数列教案 篇四 【教学目标】 一、知识与技能 1、掌握等差数列前n项和公式; 2、体会等差数列前n项和公式的推导过程; 3、会简单运用等差数列前n项和公式。 二、过程与方法 1 通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法; 2、 通过公式的运用体会方程的思想。 三、情感态度与价值观 结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 数学 必修 教案 优秀 _1
限制150内