2019年山东省滨州市中考数学试卷.docx
《2019年山东省滨州市中考数学试卷.docx》由会员分享,可在线阅读,更多相关《2019年山东省滨州市中考数学试卷.docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019年山东省滨州市中考数学试卷(A卷)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑。每小题涂对得3分,满分36分。1(3分)下列各数中,负数是()A(2)B|2|C(2)2D(2)02(3分)下列计算正确的是()Ax2+x3x5Bx2x3x6Cx3x2xD(2x2)36x63(3分)如图,ABCD,FGB154,FG平分EFD,则AEF的度数等于()A26B52C54D774(3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A主视图的面积为4B左视图的面积为4C俯视图
2、的面积为3D三种视图的面积都是45(3分)在平面直角坐标系中,将点A(1,2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A(1,1)B(3,1)C(4,4)D(4,0)6(3分)如图,AB为O的直径,C,D为O上两点,若BCD40,则ABD的大小为()A60B50C40D207(3分)若8xmy与6x3yn的和是单项式,则(m+n)3的平方根为()A4B8C4D88(3分)用配方法解一元二次方程x24x+10时,下列变形正确的是()A(x2)21B(x2)25C(x+2)23D(x2)239(3分)已知点P(a3,2a)关于原点对称的点在第四象限,则a的取值范围
3、在数轴上表示正确的是()ABCD10(3分)满足下列条件时,ABC不是直角三角形的为()AAB,BC4,AC5BAB:BC:AC3:4:5CA:B:C3:4:5D|cosA|+(tanB)2011(3分)如图,在OAB和OCD中,OAOB,OCOD,OAOC,AOBCOD40,连接AC,BD交于点M,连接OM下列结论:ACBD;AMB40;OM平分BOC;MO平分BMC其中正确的个数为()A4B3C2D112(3分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数y(x0)的图象经过对角线OB的中点D和顶点C若菱形OABC的面积为12,则k的值为()A6B5C4D3二
4、、填空题:本大题共8个小题,每小题5分,满分40分。13(5分)计算:()2|2|+ 14(5分)方程+1的解是 15(5分)若一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的方差为 16(5分)在平面直角坐标系中,ABO三个顶点的坐标分别为A(2,4),B(4,0),O(0,0)以原点O为位似中心,把这个三角形缩小为原来的,得到CDO,则点A的对应点C的坐标是 17(5分)若正六边形的内切圆半径为2,则其外接圆半径为 18(5分)如图,直线ykx+b(k0)经过点A(3,1),当kx+bx时,x的取值范围为 19(5分)如图,ABCD的对角线AC,BD交于点O,CE平分BC
5、D交AB于点E,交BD于点F,且ABC60,AB2BC,连接OE下列结论:EOAC;SAOD4SOCF;AC:BD:7;FB2OFDF其中正确的结论有 (填写所有正确结论的序号)20(5分)观察下列一组数:a1,a2,a3,a4,a5,它们是按一定规律排列的,请利用其中规律,写出第n个数an (用含n的式子表示)三、解答题:本大题共6个小题,满分74分。解答时请写出必要的演推过程。21(10分)先化简,再求值:(),其中x是不等式组的整数解22(12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人(1)请问1辆甲种客车与1辆乙
6、种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用23(12分)某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图请根据图中信息,解决下列问题:(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中E部分所对应的扇形圆心角度数;(4)身高在170x175(cm)的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队请用列表法或画树状图法,求这两人来自同一班级
7、的概率24(13分)如图,矩形ABCD中,点E在边CD上,将BCE沿BE折叠,点C落在AD边上的点F处,过点F作FGCD交BE于点G,连接CG(1)求证:四边形CEFG是菱形;(2)若AB6,AD10,求四边形CEFG的面积25(13分)如图,在ABC中,ABAC,以AB为直径的O分别与BC,AC交于点D,E,过点D作DFAC,垂足为点F(1)求证:直线DF是O的切线;(2)求证:BC24CFAC;(3)若O的半径为4,CDF15,求阴影部分的面积26(14分)如图,抛物线yx2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90,所得直线与x轴交于点D(1)求直线AD的
8、函数解析式;(2)如图,若点P是直线AD上方抛物线上的一个动点当点P到直线AD的距离最大时,求点P的坐标和最大距离;当点P到直线AD的距离为时,求sinPAD的值2019年山东省滨州市中考数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑。每小题涂对得3分,满分36分。1【分析】直接利用绝对值以及零指数幂的性质、相反数的性质分别化简得出答案【解答】解:A、(2)2,故此选项错误;B、|2|2,故此选项正确;C、(2)24,故此选项错误;D、(2)01,故此选项错误;故选:B【点
9、评】此题主要考查了绝对值以及零指数幂的性质、相反数的性质,正确化简各数是解题关键2【分析】分别利用合并同类项法则以及同底数幂的除法运算法则和积的乘方运算法则等知识分别化简得出即可【解答】解:A、x2+x3不能合并,错误;B、x2x3x5,错误;C、x3x2x,正确;D、(2x2)38x6,错误;故选:C【点评】此题主要考查了合并同类项法则以及同底数幂的除法运算法则和积的乘方运算法则等知识,正确掌握运算法则是解题关键3【分析】先根据平行线的性质,得到GFD的度数,再根据角平分线的定义求出EFD的度数,再由平行线的性质即可得出结论【解答】解:ABCD,FGB+GFD180,GFD180FGB26,
10、FG平分EFD,EFD2GFD52,ABCD,AEFEFD52故选:B【点评】本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等;两直线平行,同旁内角互补4【分析】根据该几何体的三视图可逐一判断【解答】解:A主视图的面积为4,此选项正确;B左视图的面积为3,此选项错误;C俯视图的面积为4,此选项错误;D由以上选项知此选项错误;故选:A【点评】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法5【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可【解答】解:将点A(1,2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,点B的横坐标为121,纵坐标为2
11、+31,B的坐标为(1,1)故选:A【点评】本题考查了坐标与图形变化平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减6【分析】连接AD,先根据圆周角定理得出A及ADB的度数,再由直角三角形的性质即可得出结论【解答】解:连接AD,AB为O的直径,ADB90BCD40,ABCD40,ABD904050故选:B【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键7【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案【解答】解:由8xmy与6x3yn的和是单项式,得m3,n1(m+
12、n)3(3+1)364,64的平方根为8故选:D【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点8【分析】移项,配方,即可得出选项【解答】解:x24x+10,x24x1,x24x+41+4,(x2)23,故选:D【点评】本题考查了解一元二次方程,能正确配方是解此题的关键9【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案【解答】解:点P(a3,2a)关于原点对称的点在第四象限,点P(a3,2a)在第二象限,解得:a2则a的取值范围在数轴上表示正确的是:故选:C【点评】此题主要考查了关于原点对称点的性质以及解不等式组,正确
13、掌握不等式组的解法是解题关键10【分析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论【解答】解:A、,ABC是直角三角形,错误;B、(3x)2+(4x)29x2+16x225x2(5x)2,ABC是直角三角形,错误;C、A:B:C3:4:5,C,ABC不是直角三角形,正确;D、|cosA|+(tanB)20,A60,B30,C90,ABC是直角三角形,错误;故选:C【点评】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键11【分析】由SAS证明AOCBOD得出OCAODB,ACBD,正确;由全等三角形的性质得出OACO
14、BD,由三角形的外角性质得:AMB+OACAOB+OBD,得出AMBAOB40,正确;作OGMC于G,OHMB于H,如图所示:则OGCOHD90,由AAS证明OCGODH(AAS),得出OGOH,由角平分线的判定方法得出MO平分BMC,正确;由AOBCOD,得出当DOMAOM时,OM才平分BOC,假设DOMAOM,由AOCBOD得出COMBOM,由MO平分BMC得出CMOBMO,推出COMBOM,得OBOC,而OAOB,所以OAOC,而OAOC,故错误;即可得出结论【解答】解:AOBCOD40,AOB+AODCOD+AOD,即AOCBOD,在AOC和BOD中,AOCBOD(SAS),OCAOD
15、B,ACBD,正确;OACOBD,由三角形的外角性质得:AMB+OACAOB+OBD,AMBAOB40,正确;作OGMC于G,OHMB于H,如图2所示:则OGCOHD90,在OCG和ODH中,OCGODH(AAS),OGOH,MO平分BMC,正确;AOBCOD,当DOMAOM时,OM才平分BOC,假设DOMAOMAOCBOD,COMBOM,MO平分BMC,CMOBMO,在COM和BOM中,COMBOM(ASA),OBOC,OAOBOAOC与OAOC矛盾,错误;正确的个数有3个;故选:B【点评】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 山东省 滨州市 中考 数学试卷
限制150内