《2021年江苏省盐城市中考数学试题(原卷版).docx》由会员分享,可在线阅读,更多相关《2021年江苏省盐城市中考数学试题(原卷版).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、盐城市二二一年初中毕业与升学考试数学试卷一、选择题1. 的绝对值是( )A. B. C. D. 20212. 计算:的结果是( )A. B. C. D. 3. 北京2022年冬奥会会徽如图所示,组成会徽四个图案中是轴对称图形的是( )A. B. C. D. 4. 如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A. B. C. D. 5. 2020年12月30日盐城至南通高速铁路开通运营,盐通高铁总投资约2628000万元,将数据2628000用科学记数法表示为( )A. B. C. D. 6. 将一副三角板按如图方式重叠,则的度数为( )A. B. C. D. 7. 若是一元二
2、次方程的两个根,则的值是( )A. 2B. -2C. 3D. -38. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线这里构造全等三角形的依据是( )A. B. C. D. 二、填空题9. 一组数据2,0,2,1,6的众数为_10. 分解因式:a2+2a+1_11. 若一个多边形每一个外角都等于40,则这个多边形的边数是_12. 如图,在O内接四边形中,若,则_13. 如图,在Rt中,为斜边上的中线,若,则_14. 一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_15. 劳动
3、教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克设平均每年增产的百分率为,则可列方程为_16. 如图,在矩形中,、分别是边、上一点,将沿翻折得,连接,当_时,是以为腰的等腰三角形 三、解答题17. 计算:18. 解不等式组:19. 先化简,再求值:,其中20. 已知抛物线经过点和(1)求、值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式21. 如图,点是数轴上表示实数的点(1)用直尺和圆规在数轴上作出表示实数的的点;(保留作图痕迹,不写作法)(2)利用数轴比较和的大
4、小,并说明理由22. 圆周率是无限不循环小数历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究目前,超级计算机已计算出的小数部分超过31.4万亿位有学者发现,随着小数部分位数的增加,09这10个数字出现的频率趋于稳定,接近相同 (1)从的小数部分随机取出一个数字,估计数字是6的概率为_;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率(用画树状图或列表方法求解)23. 如图,、分别是各边的中点,连接、(1)求证:四边形为平行四边形;(2)加上条件 后,能使得四边形为菱形,请从;平分;,这三个条件中选择条件填空(写序号),并加以证明24. 如
5、图,为线段上一点,以为圆心长为半径的O交于点,点在O上,连接,满足(1)求证:是O的切线;(2)若,求值25. 某种落地灯如图1所示,为立杆,其高为;为支杆,它可绕点旋转,其中长为;为悬杆,滑动悬杆可调节的长度支杆与悬杆之间的夹角为(1)如图2,当支杆与地面垂直,且的长为时,求灯泡悬挂点距离地面的高度;(2)在图2所示的状态下,将支杆绕点顺时针旋转,同时调节的长(如图3),此时测得灯泡悬挂点到地面的距离为,求的长(结果精确到,参考数据:,)26. 为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:该地区每周接种疫苗人数统计表周次
6、第1周第2周第3周第4周第5周第6周第7周第8周接种人数(万人)710121825293742该地区全民接种疫苗情况扇形统计图A:建议接种疫苗已接种人群B:建议接种疫苗尚未接种人群C:暂不建议接种疫苗人群根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点、作一条直线(如图所示,该直线的函数表达式为),那么这条直线可近似反映该地区接种人数的变化趋势请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为_万人:该地区的总人口约为_万人;(2)若从第9周开始,每周的接种
7、人数仍符合上述变化趋势估计第9周的接种人数约为_万人;专家表示:疫苗接种率至少达60%,才能实现全民免疫那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人如果,那么该地区的建议接种人群最早将于第几周全部完成接种?27. 学习了图形的旋转之后,小明知道,将点绕着某定点顺时针旋转一定的角度,能得到一个新的点经过进一步探究,小明发现,当上述点在某函数图像上运动时,点也随之运动,并且点的运动轨迹能形成一个新的图形试根据下列各题中所给的定点的坐标和角度的大小来解决相关问题 初步感知】如图1,设,点是一次函数图像上的动点,已知该一次函数的图像经过点(1)点旋转后,得到的点的坐标为_;(2)若点的运动轨迹经过点,求原一次函数的表达式【深入感悟】(3)如图2,设,点反比例函数的图像上的动点,过点作二、四象限角平分线的垂线,垂足为,求的面积【灵活运用】(4)如图3,设A,点是二次函数图像上的动点,已知点、,试探究的面积是否有最小值?若有,求出该最小值;若没有,请说明理由
限制150内