2021-2022学年山东省临沂市高一年级上册学期12月月考数学试题含答案.pdf





《2021-2022学年山东省临沂市高一年级上册学期12月月考数学试题含答案.pdf》由会员分享,可在线阅读,更多相关《2021-2022学年山东省临沂市高一年级上册学期12月月考数学试题含答案.pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021-2022学 年 山 东 省 临 沂 市 高 一 上 学 期 1 2月 月 考 数 学 试 题 一、单 选 题 1.已 知 集 合=,8=1,25,则 A u B=()A 1 B.-1Q2 5 c-1,0151 口.-1,012,5,【答 案】D【分 析】利 用 并 集 运 算 法 则 进 行 计 算.详 解/U 8=-l,0,lUl,2,5=-l,0,l,2,5故 选:Dy=A/1 X2 H-r2.函 数 1 的 定 义 域 是()A.(-刈 B.(T,0)U(0,l)c,-l,0)U(0,l D(0,1【答 案】C0【分 析】函 数 定 义 域 满 足 1父*,求 解 即 可 fl
2、-x2 0【详 解】由 题,函 数 定 义 域 满 足 1 工。,解 得 x-l,)U(O,l故 选:C3.已 知 命 题 P:3xl,X2-4 1,x2-4 0 B.1,x2-4 0C.Vx 0 D VX 1,X2-40【答 案】D【解 析】根 据 命 题 的 否 定 的 定 义 写 出 命 题 的 否 定,然 后 判 断.【详 解】命 题 P:3xl,W-4 l,X2-40.故 选:D.4.方 程 l=4-2x的 根 所 在 的 区 间 是()A.(叫 B.。2)C.(2,3)D.0,4)【答 案】B【分 析】构 造 函 数/G)=M X+2X-4,确 定 其 单 调 性,结 合 零 点
3、存 在 性 定 理 得 到 结 论.【详 解】令,(x)=lnx+2 x-4,显 然/(x)=lnx+2x-4单 调 递 增,又 因 为/(1)=2-4=-20由 零 点 存 在 性 定 理 可 知:/5)=出+2-4的 零 点 所 在 区 间 为(1,2),所 以 In x=4-2x的 根 所 在 区 间 为(L2)故 选:B5.1614年 苏 格 兰 数 学 家 纳 皮 尔 在 研 究 天 文 学 的 过 程 中 为 了 简 化 计 算 而 发 明 了 对 数 方 法;1637年 法 国 数 学 家 笛 卡 尔 开 始 使 用 指 数 运 算;1770年 瑞 士 数 学 家 欧 拉 发 现
4、 了 指 数 与 对 数 的 互 逆 关 系,指 出:对 数 源 于 指 数,对 数 的 发 明 先 于 指 数.若 5,=2,lg2=0.3010,贝 ijx 的 值 约 为()A.0.431 B.0.430 c.0-429 D.2.322【答 案】A【分 析】由 指 对 互 化 原 则 可 知 尤=bgs 2,结 合 换 底 公 式 和 对 数 运 算 性 质 计 算 即 可.,c 1g 2 1g 2 lg2 0.3010 x=loe,2=-s=-0.431收 5 l-lg2 1-0.3010【详 解】由 5、=2 得:2故 选:A./(x)=X6,函 数%+1 的 图 像 大 致 是()
5、尸,A.O _-上 A0 x【答 案】B【分 析】利 用 函 数 的 奇 偶 性 和 函 数 值 的 正 负 即 可 判 断.【详 解】因 为)一,所 以/(X)为 奇 函 数,所 以 C 错 误;当 x时,所 以 A,D 错 误,B 正 确.故 选:B.7.中 国 宋 代 的 数 学 家 秦 九 韶 曾 提 出“三 斜 求 积 术”,即 假 设 在 平 面 内 有 一 个 三 角 形,边 长 分 别 为。,6 c,三 角 形 的 面 积 S可 由 公 式 S=二 5 求 得,其 中P 为 三 角 形 周 长 的 一 半,这 个 公 式 也 被 称 为 海 伦-秦 九 韶 公 式,现 有 一
6、个 三 角 形 的 边 长 满 足。+6=12,c=8,则 此 三 角 形 面 积 的 最 大 值 为 A.4有 B.4而 C.8后 D.8屏【答 案】C【分 析】由 题 意,p=10,s=j20(10-a)(10-b),利 用 基 本 不 等 式,即 可 得 出 结 论.【详 解】由 题 意,p=10,=J10(10-a)(10-/?)(10-c)=20(10-)(10-/)而-1二:0 二=旧 此 三 角 形 面 积 的 最 大 值 为 8逐.故 选 C.【点 睛】本 题 考 查 三 角 形 的 面 积 的 计 算,考 查 基 本 不 等 式 的 运 用,属 于 中 档 题.8.已 知 函
7、 数 x)=3”,且 函 数 g(x)的 图 像 与/G)的 图 像 关 于 对 称,函 数 e G)的 图 像 与 g(x)的 图 像 关 于 X 轴 对 称,设 af 5),A.abc B.bca c.cba D.bac【答 案】D【分 析】根 据 函 数 图 像 的 对 称 关 系 可 以 得 到 g(x),9(x)的 解 析 式,代 入 后 跟 特 殊 值 0 比 较 可 得 b 最 小,然 后 构 造 函 数,利 用 特 殊 值 和 函 数 的 单 调 性 比 较 4,。的 大 小 即 可.【详 解】因 为 名 卜)的 图 像 与/G)的 图 像 关 于 丁=工 对 称,所 以 g(
8、x)=logsx,又 因 为 夕(X)的 图 像 与 且 6)关 于 x 轴 对 称,所 以*卜)=一 爪,0/(2)-3*=g|-|=log3-0 0c=|-|=-log3-=log32l 2.2,所 以 6 最 小:=V3-=log2 3=2 log,V3a,c,h,(A.2=xln2-2构 造 右(式)=x_2bg2%,则 xln2 xln2,当 时,所 以(X)在 T In2)上 单 调 递 减,2因 为 0ln2 岫 户。,V3-21og,V3 0=i V321og,A/3=-a c,又 因 为 a,c0,所 以 c a,综 上 所 述 c0/故 选:D.【点 睛】比 较 对 数、指
9、 数、累 的 大 小 的 方 法:利 用 指 数 函 数、对 数 函 数、黑 函 数 的 单 调 性 比 较 大 小;借 助 特 殊 值 或 其 它 的 数 值 比 较 大 小;根 据 两 数 之 间 的 关 系,构 造 函 数 来 比 较 大 小.二、多 选 题 9.若。6 则()1 1一 be B.a-cb-c c.2 2 D.a b【答 案】BCD【分 析】利 用 特 殊 值 法 可 以 排 除 A,利 用 不 等 式 的 基 本 性 质 可 判 断 B 正 确,再 利 用 函 数 的 单 调 性 可 判 断 C D 正 确.【详 解】对 于 A,当 c=时,ac2bc 故 A 错 误;
10、对 于 B,不 等 式 两 边 加(或 减)同 一 个 数(或 式 子),不 等 号 的 方 向 不 变,故 B 正 确;对 于 C,因 为 y=2在 R 上 单 调 递 增,又 a b 0,故 22,故 C 正 确;对 于 D,因 为=7在(48)上 单 调 递 减,又 a b 0,故 故 D 正 确.故 选:BCD10.下 列 不 等 式 一 定 成 立 的 是()X+-2y3A.xX4+1.B.丁 2 堂 4 C.2D,若 x 0,,则 X V【答 案】BC【分 析】利 用 基 本 不 等 式 可 判 断 各 选 项 的 正 误.3X 4-2,x-=2对 于 B 中,由 x x N x,
11、x-2当 且 仅 当 X 时,即=1时,等 号 成 立,即 X,所 以 B 正 确;,2 x2+y2 x2+y2 x2+y2(x+y)2x-+y-=-+-+xy=对 于 C 中,2 2 2 2,当 且 仅 当 x=N 时,等 号 成 立,所 以 C 正 确;z o 0 上+*库=2对 于 D 中,x0/(%)=,、(a 011.若 函 数 3+(a-l)x,x 1-a-1 0【详 解】;x)在 R 上 单 调 递 增,3-a+1,解 得:a 2,的 取 值 可 以 为 选 项 中 的 3或 2.故 选:AD.12.已 知/(X)为 偶 函 数,且/(a)为 奇 函 数,若 则()A.八 3)=
12、0 B/(3)=/(5)C/(X+3)=/(X-1)D/(x+2)+/(x+l)=l【答 案】ABC【分 析】A 选 项,根 据 题 干 条 件 得 到/(r)=/(x),/(T+1)=-/(X+I),利 用 赋 值 法 得 到/二,3)=0,5)=0,判 断 出 A B 选 项,再 推 导 出 函 数 的 周 期 为 4,故 C 正 确;代 入 特 殊 值,判 断 D 错 误.【详 解】A 选 项,因 为/G)为 偶 函 数,所 以/(-x)=/G),因 为/(x+1)为 奇 函 数,所 以/(-x+l)=-/(x+l),令 x=0得:/0)=-/(1),解 得:/0)=,所 以/(-1)=
13、/0)=令 E 得/3)一(2+)即(3)=。,所 以/(。,故 A 正 确 B 选 项,令 x=4得:/(-4+1)=-/(4+1)(即/(-3)=-/(5)因 为,(-3/。)=。,则-/(力。,所 以/(5)=。,所 以 心/,故 B 正 确 C选 项,因 为/(r)=/(x),所 以/(X+3)=/(T-3),因 为/(r+l)=-/G+l),所 以/(x_2+l)=_/(x+2+i)即/(*1)=-仆+3),所 以/(x+3)=_/(r _ i),/(-x-3)=-/(-x-l)所 以/(-x+2_3)=-/(_ x+2-l)即=+所 以/(_*_ 3)=/(_*+)所 以/的 周
14、期 为 4,/G+3)=/(x-l),故 c 正 确:D 选 项,因 为/(r+l)=-/(x+l),所 以 令 x=l 得:/()=-/(2)=0,解 得:/(2)=0,令 小+2)+仆)=】中 得:/(2)+外)=。+。叫 故 口 错 误 故 选:ABC三、填 空 题 13.(*1。&2=【答 案】6-6【分 析】利 用 指 数 骞 与 对 数 运 算 即 可 求 解.【详 解】+嘀 2=七 1 9+血 8 3-=-3+-1 log1 188=-n故 答 案 为:7.1 4.若“VxwR,/_ 加 _ 2a 0”的 否 定 是 真 命 题,则 实 数 a 的 取 值 范 围 是 答 案(-
15、8,-8U 0,+OO)【分 析】写 出 命 题 的 否 命 题,根 据 二 次 不 等 式 有 解 问 题,利 用 根 的 判 别 式 列 出 不 等 式,求 出 实 数 a 的 取 值 范 围.【详 解】由 题 意 得:*。eR,/-仆-240为 真 命 题,=/+8“0,解 得:a-8u0,+且*1)的 图 象 恒 过 定 点 P,则 点 P 的 坐 标 为 _【答 案】(1,2)【分 析】由/)=2恒 成 立 可 得 定 点 坐 标.【详 解】当“1 时,/0)=bg“l+l+l=2,故 答 案 为:。2).16.若 存 在 常 数 左 和 仙 使 得 函 数 尸 G)和 G O)对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 山东省 临沂市 一年级 上册 学期 12 月月 数学试题 答案

限制150内