2018年陕西省高考理科数学试题及答案.pdf
《2018年陕西省高考理科数学试题及答案.pdf》由会员分享,可在线阅读,更多相关《2018年陕西省高考理科数学试题及答案.pdf(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绝密绝密启用前启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。112i12iA43i55B43i55C34i55D34i552已知集合223Axy xyxyZZ,则A中元素的个数为A9B8C5D43函数 2eexxf xx的图像大致为4已知向量a,b满足|1a,1 a b,则(2)aabA4B3C2D05双曲线222
2、21(0,0)xyabab的离心率为3,则其渐近线方程为A2yx B3yx C22yx D32yx 6在ABC中,5cos25C,1BC,5AC,则AB A4 2B30C29D2 57为计算11111123499100S ,设计了右侧的程序框图,则在空白框中应填入A1ii B2ii C3ii D4ii 8我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30723在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是A112B114C115D1189在长方体1111ABCDABC D中,1ABBC,13A
3、A,则异面直线1AD与1DB所成角的余弦值为A15B56C55D2210若()cossinf xxx在,a a是减函数,则a的最大值是A4B2C34D11已知()f x是定义域为(,)的奇函数,满足(1)(1)fxfx若(1)2f,则(1)(2)(3)(50)ffffA50B0C2D5012已知1F,2F是椭圆22221(0)xyCabab:的左,右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,12PFF为等腰三角形,12120FF P,则C的离心率为A23B12C13D14二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13曲线2ln(1)yx在点(0,0)处的切线方程为
4、_14若,x y满足约束条件25023050 xyxyx,则zxy的最大值为_开始0,0NTSNTS输出1i 100i 1NNi11TTi结束是否15已知sincos1,cossin0,则sin()_16已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为 45,若SAB的面积为5 15,则该圆锥的侧面积为_三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作答。第 22、23 为选考题,考生根据要求作答。(一)必考题:共 60 分。17(12 分)记nS为等差数列na的前n项和,已知17a ,315S (1
5、)求na的通项公式;(2)求nS,并求nS的最小值18(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额y(单位:亿元)的折线图为了预测该地区 2018 年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型 根据 2000年至 2016 年的数据(时间变量t的值依次为1 217,)建立模型:30.413.5yt;根据 2010 年至 2016 年的数据(时间变量t的值依次为1 27,)建立模型:9917.5yt(1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由学科*网19(12 分)
6、设抛物线24Cyx:的焦点为F,过F且斜率为(0)k k 的直线l与C交于A,B两点,|8AB(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程20(12 分)如图,在三棱锥PABC中,2 2ABBC,4PAPBPCAC,O为AC的中点(1)证明:PO 平面ABC;(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值PAOCBM21(12 分)已知函数2()exf xax(1)若1a,证明:当0 x 时,()1f x;(2)若()f x在(0,)只有一个零点,求a(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第
7、一题计分。22选修 44:坐标系与参数方程(10 分)在直角坐标系xOy中,曲线C的参数方程为2cos4sinxy,(为参数),直线l的参数方程为1cos2sinxtyt,(t为参数)(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率23选修 45:不等式选讲(10 分)设函数()5|2|f xxax(1)当1a 时,求不等式()0f x 的解集;(2)若()1f x,求a的取值范围一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.A.B.C.D.【答案】D【解析】分析:根据复数除法
8、法则化简复数,即得结果.详解:选 D.点睛:本题考查复数除法法则,考查学生基本运算能力.2.已知集合,则 中元素的个数为A.9B.8C.5D.4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有 9 个,选 A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3.函数的图像大致为A.AB.BC.CD.D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去 A,舍去 D;,所以舍去 C;因此选 B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由
9、函数的值域,判断图象的上下位置;由函数的单调性,判断图象的变化趋势;由函数的奇偶性,判断图象的对称性;由函数的周期性,判断图象的循环往复4.已知向量,满足,则A.4B.3C.2D.0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选 B.点睛:向量加减乘:5.双曲线的离心率为,则其渐近线方程为A.B.C.D.【答案】A【解析】分析:根据离心率得 a,c 关系,进而得 a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选 A.点睛:已知双曲线方程求渐近线方程:.6.在中,则A.B.C.D.【答案】A【解析】分析:先根据二倍角余
10、弦公式求 cosC,再根据余弦定理求 AB.详解:因为所以,选 A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7.为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选 B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数
11、、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果 哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是A.B.C.D.【答案】C【解析】分析:先确定不超过 30 的素数,再确定两个不同的数的和等于 30 的取法,最后根据古典概型概率公式求概率.详解:不超过 30 的素数有 2,3,5,7,11,13,17,19,23,29,共 10 个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于 30 的有
12、 3 种方法,故概率为,选 C.点睛:古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.9.在长方体中,则异面直线与所成角的余弦值为A.B.C.D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以 D 为坐标原点,DA,DC,DD1为 x,y,z
13、轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选 C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10.若在是减函数,则的最大值是A.B.C.D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选 A.点睛:函数的性质:(1).(2)周期(3)由求对称轴,(4)由求增区间;由求减区间.11.已知是定义域为的奇函数,满足若,则A.B.0C.
14、2D.50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,从而,选 C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解12.已知,是椭圆的左,右焦点,是 的左顶点,点 在过 且斜率为的直线上,为等腰三角形,则 的离心率为A.B.C.D.【答案】D【解析】分析:先根据条件得 PF2=2c,再利用正弦定理得 a,c 关系,即得离心率.详解:因为为等腰三角形,所以 PF2=F1F2=2c,由斜率为得,由正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 陕西省 高考 理科 数学试题 答案
限制150内