立体几何知识点+经典习题_中学教育-高考.pdf
《立体几何知识点+经典习题_中学教育-高考.pdf》由会员分享,可在线阅读,更多相关《立体几何知识点+经典习题_中学教育-高考.pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 精品知识点 立体几何知识点和典型例题 1、柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱EDCBAABCDE 或用对角线的端点字母,如五棱柱AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分
2、类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥EDCBAP 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台EDCBAP 几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图
3、是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。2、空间几何体的三视图 学习必备 精品知识点 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图
4、反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法 斜二测画法特点:原来与 x 轴平行的线段仍然与 x 平行且长度不变;原来与 y 轴平行的线段仍然与 y 平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c 为底面周长,h 为高,h为斜高,l 为母线)chS直棱柱侧面积 rhS2圆柱侧 21chS正棱锥侧面积 rlS圆锥侧面积)(2121hccS
5、正棱台侧面积 lRrS)(圆 台 侧 面 积 lrrS2圆柱表 lrrS圆锥表 22RRlrlrS圆台表 (3)柱体、锥体、台体的体积公式 VSh柱 2VS hr h圆柱 13VS h锥 hrV231圆锥 1()3VSS SS h台 2211()()33VSS SS hrrRR h圆台 (4)球体的表面积和体积公式:V球=343R;S球面=24 R 4、空间点、直线、平面的位置关系(1)平面 平面的概念:A.描述性说明;B.平面是无限伸展的;平面的表示:通常用希腊字母、表示,如平面(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面 BC。点与平面的关系:点 A在平面内,记作A;点
6、A不在平面内,记作A 点与直线的关系:点 A的直线 l 上,记作:Al;点 A在直线 l 外,记作 Al;直线与平面的关系:直线 l 在平面内,记作 l;直线 l 不在平面内,记边形且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱柱四棱柱五棱柱等表示用各顶点字母如五棱柱或用对角线的端点字母如五棱柱几何特征两底面是对应边平行的面是多边形其余各面都是有一个公共顶点的三角形由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱锥四棱锥五棱锥等表示用各顶点字母如五棱锥几何特征侧面对角面都是三角形平行于底面的截面与底面相的部分分类以底面多
7、边形的边数作为分类的标准分为三棱态四棱台五棱台等表示用各顶点字母如五棱台几何特征上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点圆柱定义以矩形的一边所在的直线为轴旋转其余三边旋学习必备 精品知识点 作 l。(2)公理 1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)应用:检验桌面是否平;判断直线是否在平面内 用符号语言表示公理 1:,Al Bl ABl (3)公理 2:经过不在同一条直线上的三点,有且只有一个平面。推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理 2 及其推论作用:它是空间
8、内确定平面的依据 它是证明平面重合的依据(4)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面和相交,交线是 a,记作a。符号语言:,PABABl Pl 公理 3 的作用:它是判定两个平面相交的方法。它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理 4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
9、 异面直线所成角:直线 a、b 是异面直线,经过空间任意一点 O,分别引直线 aa,b b,则把直线 a 和 b 所成的锐角(或直角)叫做异面直线 a 和 b 所成的角。两条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:根据异面直线的定义;异面直线的判定定理(2)在异面直线所成角定义中,空间一点 O 是任取的,而和点 O 的位置无关。求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角 C、利用三角形来求角(7)
10、等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系 直线在平面内有无数个公共点 边形且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱柱四棱柱五棱柱等表示用各顶点字母如五棱柱或用对角线的端点字母如五棱柱几何特征两底面是对应边平行的面是多边形其余各面都是有一个公共顶点的三角形由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱锥四棱锥五棱锥等表示用各顶点字母如五棱锥几何特征侧面对角面都是三角形平行于底面的截面与底面相的部分分类以底面多边形的边数作为分类的标准分为三棱态四棱台
11、五棱台等表示用各顶点字母如五棱台几何特征上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点圆柱定义以矩形的一边所在的直线为轴旋转其余三边旋学习必备 精品知识点 三种位置关系的符号表示:a aA a(9)平面与平面之间的位置关系:平行没有公共点;相交有一条公共直线。b 5、空间中的平行问题(1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。线线平行线面平行 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行(2)平面与平面平行的判定及其性质 两个平面平行的
12、判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义 两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直:如果一条直线和一个平面内的任何一条直
13、线垂直,就说这条直线和这个平面垂直。平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理 线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。面面垂直的判定定理和性质定理 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。9、空间角问题(1)直线与直线所成的
14、角 两平行直线所成的角:规定为0。边形且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱柱四棱柱五棱柱等表示用各顶点字母如五棱柱或用对角线的端点字母如五棱柱几何特征两底面是对应边平行的面是多边形其余各面都是有一个公共顶点的三角形由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱锥四棱锥五棱锥等表示用各顶点字母如五棱锥几何特征侧面对角面都是三角形平行于底面的截面与底面相的部分分类以底面多边形的边数作为分类的标准分为三棱态四棱台五棱台等表示用各顶点字母如五棱台几何特征上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点圆柱定义
15、以矩形的一边所在的直线为轴旋转其余三边旋学习必备 精品知识点 两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。两条异面直线所成的角:过空间任意一点 O,分别作与两条异面直线 a,b 平行的直线ba,,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。(2)直线和平面所成的角 平面的平行线与平面所成的角:规定为0。平面的垂线与平面所成的角:规定为90。平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。在“作角”时依定义
16、关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角 二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角
17、为直二面角 求二面角的方法 定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角 7、空间直角坐标系(1)定义:如图,,OBCDD AB C是单位正方体.以 A为原点,分别以 OD,O,A,OB 的方向为正方向,建立三条数轴x轴.y 轴.z 轴。这时建立了一个空间直角坐标系 Oxyz.1)O叫做坐标原点 2)x 轴,y 轴,z 轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。(2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为 x 轴正方向,食指
18、指向为 y 轴正向,中指指向则为 z 轴正向,这样也可以决定三轴间的相位置。(3)任意点坐标表示:空间一点 M的坐标可以用有序实数组(,)x y z来表示,有序实数组(,)x y z 叫做点 M在此空间直角坐标系中的坐标,记作(,)M x y z(x 叫做点 M的横坐标,y 叫做点 M的纵坐标,z 叫做点 M的竖坐标)(4)空间两点距离坐标公式:212212212)()()(zzyyxxd【常用结论】一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行 边形
19、且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱柱四棱柱五棱柱等表示用各顶点字母如五棱柱或用对角线的端点字母如五棱柱几何特征两底面是对应边平行的面是多边形其余各面都是有一个公共顶点的三角形由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱锥四棱锥五棱锥等表示用各顶点字母如五棱锥几何特征侧面对角面都是三角形平行于底面的截面与底面相的部分分类以底面多边形的边数作为分类的标准分为三棱态四棱台五棱台等表示用各顶点字母如五棱台几何特征上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点圆柱定义以矩形的一边所在的直线为轴旋转其余三边
20、旋学习必备 精品知识点 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个 平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3
21、 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直 2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 5、如果两个平面垂直,那么在一个平面内垂直它们交线
22、的直线垂直于另一个平面 6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为90 2、在一个
23、平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 边形且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱柱四棱柱五棱柱等表示用各顶点字母如五棱柱或用对角线的端点字母如五棱柱几何特征两底面是对应边平行的面是多边形其余各面都是有一个公共顶点的三角形由这些面所围成的几何体分类以底面多边形的边数作为分类的标准分为三棱锥四棱锥五棱锥等表示用各顶点字母如五棱锥几何特征侧面对角面都是三角形平行于底面的截面与底面相的部分分类以底面多边形的边数作为分类的标准分为三棱态四棱台五棱台等表示用各顶点字
24、母如五棱台几何特征上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点圆柱定义以矩形的一边所在的直线为轴旋转其余三边旋学习必备 精品知识点 1、异面直线所成的角的取值范围是:900 90,0 2、直线与平面所成的角的取值范围是:900 90,0 3、斜线与平面所成的角的取值范围是:900 90,0 4、二面角的大小用它的平面角来度量;取值范围是:1800 180,0 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 常用方法及公示:1证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(
25、2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.2证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.3证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.4证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.5证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 知识点 经典 习题 中学 教育 高考
限制150内