空间向量与立体几何知识点与例题_中学教育-高考.pdf
《空间向量与立体几何知识点与例题_中学教育-高考.pdf》由会员分享,可在线阅读,更多相关《空间向量与立体几何知识点与例题_中学教育-高考.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结 优秀知识点 空间向量与立体几何知方法总结 一知识要点。1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。(2)向量具有平移不变性 2.空间向量的运算。定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。OBOAABab;BAOAOBab;()OPaR 运算律:加法交换律:abba 加法结合律:)()(cbacba 数乘分配律:baba)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3.共线向量。(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量
2、或平行向量,a平行于b,记作ba/。(2)共线向量定理:空间任意两个向量a、b(b0),a/b存在实数 ,使ab。(3)三点共线:A、B、C 三点共线ACAB )1(yxOByOAxOC其中(4)与a共线的单位向量为aa 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。说明:空间任意的两向量都是共面的。(2)共面向量定理:如果两个向量,a b不共线,p与向量,a b共面的条件是存在实数,x y使pxayb。(3)四点共面:若 A、B、C、P 四点共面ACyABxAP )1(zyxOCzOByOAxOP其中 5.空间向量基本定理:如果三个向量,a b c不共面,那么对空间
3、任一向量p,存在一个唯一的有序实数组,x y z,使pxaybzc。若三向量,a bc不共面,我们把,a b c叫做空间的一个基底,,a b c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。推论:设,O A B C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数,x y z,名师总结 优秀知识点 使OPxOAyOBzOC。6.空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系Oxyz中,对空间任一点A,存在唯一的有序实数组(,)x y z,使zkyixiOA,有序实数组(,)x y z叫作向量A在空间直角坐标系Oxyz中的坐标,记作(,)A x y
4、z,x叫横坐标,y叫纵坐标,z叫竖坐标。注:点 A(x,y,z)关于 x 轴的的对称点为(x,-y,-z),关于 xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。在 y 轴上的点设为(0,y,0),在平面 yOz 中的点设为(0,y,z)(2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用,i j k表示。空间中任一向量kzjyi xa=(x,y,z)(3)空间向量的直角坐标运算律:若123(,)aa a a,123(,)bb b b,则112233(,)abab ab ab,112233(,)abab ab ab
5、,123(,)()aaaaR ,1 12 23 3a ba ba ba b,112233/,()abab ab abR,1 12 23 30aba ba ba b。若111(,)A x y z,222(,)B xyz,则212121(,)ABxx yy zz。一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。定 比 分 点 公 式:若111(,)A x y z,222(,)B xyz,PBAP,则 点P坐 标 为)1,1,1(212121zzyyxx。推导:设 P(x,y,z)则),(),(22211,1zzyyxxzzyyxx,显然,当 P 为 AB 中点时,
6、)2,2,2(212121zzyyxxP),(),(,333222111zyxCzyxB)zy,A(xABC中,三 角 形 重 心P坐 标 为)2,2,3(321321321zzzyyyxxxP ABC的五心:内心 P:内切圆的圆心,角平分线的交点。)(ACACABABAP(单位向量)名师总结 优秀知识点 外心 P:外接圆的圆心,中垂线的交点。PCPBPA 垂心 P:高的交点:PCPBPCPAPBPA(移项,内积为 0,则垂直)重心 P:中线的交点,三等分点(中位线比))(31ACABAP 中心:正三角形的所有心的合一。(4)模长公式:若123(,)aa a a,123(,)bb b b,则2
7、22123|aa aaaa,222123|bb bbbb(5)夹角公式:1 1223 3222222123123cos|a ba ba ba ba babaaabbb。ABC中0 ACABA为锐角0 ACABA为钝角,钝角(6)两点间的距离公式:若111(,)A x y z,222(,)B xyz,则2222212121|()()()ABABxxyyzz,或222,212121()()()A Bdxxyyzz 7.空间向量的数量积。(1)空间向量的夹角及其表示:已知两非零向量,a b,在空间任取一点O,作,OAa OBb,则AOB叫 做 向 量a与b的 夹 角,记 作,a b;且 规 定0,a
8、 b,显 然 有,a bb a;若,2a b,则称a与b互相垂直,记作:ab。(2)向量的模:设OAa,则有向线段OA的长度叫做向量a的长度或模,记作:|a。(3)向量的数量积:已知向量,a b,则|cos,aba b叫做,a b的数量积,记作a b,即a b|cos,aba b 。(4)空间向量数量积的性质:|cos,a eaa e。0aba b。2|aa a。(5)空间向量数量积运算律:()()()aba bab 。a bb a(交换律)。()abca ba c (分配律)。不满足乘法结合率:)()(cbacba 二空间向量与立体几何(高考答题必考)1线线平行两线的方向向量平行 1-1线面
9、平行线的方向向量与面的法向量垂直 1-2面面平行两面的法向量平行 2 线线垂直(共面与异面)两线的方向向量垂直 名师总结 优秀知识点 2-1线面垂直线与面的法向量平行 2-2面面垂直两面的法向量垂直 3 线线夹角 两条异面直线所成的角:1、定义:设 a、b 是两条异面直线,过空间任一点 O 作直线/,/aa bb,则/a与/b所夹的锐角或直角叫做 a 与 b 所成的角 2、范围:两异面直线所成角的取值范围是02 3、向量求法:设直线 a、b 的方向向量为a、b,其夹角为,则有cos|cos|a bab 4、注意:两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但两者不完全相等,当两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 立体几何 知识点 例题 中学 教育 高考
限制150内