等比数列的前n项和(教学设计)_中学教育-高考.pdf
《等比数列的前n项和(教学设计)_中学教育-高考.pdf》由会员分享,可在线阅读,更多相关《等比数列的前n项和(教学设计)_中学教育-高考.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 等比数列的前 n 项和(第一课时)一 教材分析。(1)教材的地位与作用:等比数列的前 n 项和选自普通高中课程标准数学教科书数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前 n 项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。二学情分析。(1)学生的已有的知识结构:掌握了等差数列的概
2、念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。(2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前 n 项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前 n 项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于 q=1 这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。三教学目标。根据教学
3、大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标理解并掌握等比数列前 n 项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。(2)过程与方法目标通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维学习必备 欢迎下载 能力和逆向思维的能力(3)情感,态度与价值观培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的 简洁美。四重点,难点分析。教学重点:公式的推导、公式的特点和公式的运用。教学难点:公式的推导方法
4、及公式应用中 q 与 1 的关系。五教法与学法分析.培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉
5、快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。六课堂设计(一)创设情境,提出问题。(时间设定:3 分钟)利用投影展示 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的 64 个方格上,第一格放 1 粒小麦,第二格放 2 粒,第三格放 4 粒,往后每一格都是前一格的两倍,直至第 64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?设计这个情境目的是在引入课题的同时激发学
6、生的兴趣,调动学习的积极性故事内容紧扣本节课的主题与重点 提出问题 1:同学们,你们知道西萨要的是多少粒小麦吗?标准数学教科书数学是数列这一章中的一个重要内容它不仅在现实生活中有着广泛的实际应用如储蓄分期付款的有关计算等等而且公式推导过程中所渗透的类比化归分类讨论整体变换和方程等思想方法都是学生今后学习和工作中必思想的解也为以后学数列的求和数学归纳法等做好铺垫二学情分析学生的已有的知识结构掌握了等差数列的概念等差数列的通项公式和求和公式与方法等比数列的概念与通项公式教学对象高二科班的学生学习兴趣比较浓表现欲较强深刻因而片面不够严谨从学生的认知角度来看学生很容易把本节内容与等差数列前项和从公式的
7、形成特点等方面进行类比这是积极因素应因势利导不利因素是本节公式的推导与等差数列前项和公式的推导有着本质的不同这对学生的学习必备 欢迎下载 引导学生写出麦粒总数236312222 (二)师生互动,探究问题5 分钟 提出问题 2:?23631+2+2+2+2 究竟等于多少呢 有学生会说:用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。)提出问题 3:同学们,我们来分析一下这个和式有什么特征?(学生会发现,后一项都是前一项的 2 倍)提出问题 4:如果我们把每一项都乘以 2,就变成了它的后一项,那么我们若在此等式两边同以 2,得到另一式:利用投影展示 2363642346464.1222
8、2.(1)222222.(2)SS 比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)提出问题 5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:646421S 这五个问题的设计意图:层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之苦后,突然发现上述解法,也让学生感受到这种方法的神奇 这时,老师向同学们介绍错位相减法,并 提出问题 6:同学们反思一下我们错位相减法求此题的过程,为什 么(1)式两边要同乘以 2 呢?这个问题的设计意图:让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺
9、垫(三)类比联想,解决问题。时间设定:10 分钟 提出问题 7:n1n设等比数列 a的首项为a,公比为q,求它的前项和 S 123naaaa n即 S 学生开展合作学习,讨论交流,老师巡视课堂,发现有典型解法的,叫同学板书在黑板上。设计意图:从特殊到一般,从模仿到创新,有利于学生的知识迁移和能力提高,让学生在探索过程中,充分感受到成功的情感体验 标准数学教科书数学是数列这一章中的一个重要内容它不仅在现实生活中有着广泛的实际应用如储蓄分期付款的有关计算等等而且公式推导过程中所渗透的类比化归分类讨论整体变换和方程等思想方法都是学生今后学习和工作中必思想的解也为以后学数列的求和数学归纳法等做好铺垫二
10、学情分析学生的已有的知识结构掌握了等差数列的概念等差数列的通项公式和求和公式与方法等比数列的概念与通项公式教学对象高二科班的学生学习兴趣比较浓表现欲较强深刻因而片面不够严谨从学生的认知角度来看学生很容易把本节内容与等差数列前项和从公式的形成特点等方面进行类比这是积极因素应因势利导不利因素是本节公式的推导与等差数列前项和公式的推导有着本质的不同这对学生的学习必备 欢迎下载 (四)分析比较,开拓思维。时间设定:5 分钟 将不同的的方法进行分析评价。根据学生的认识状况,可能有如下几种方法:错位相减法 1:错位相减法 2 提出公比 q 累加法 可能也有同学会想到由等比定理得 qaaSqnn11)(等比
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列 教学 设计 中学 教育 高考
限制150内