2019年湖南省高考理科数学试题及答案.docx
《2019年湖南省高考理科数学试题及答案.docx》由会员分享,可在线阅读,更多相关《2019年湖南省高考理科数学试题及答案.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绝密启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。注意事项:1答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。
2、考试结束后,将试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则=ABCD2设复数z满足,z在复平面内对应的点为(x,y),则ABCD3已知,则ABCD4古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是A165 cmB175 cmC185 cmD190 cm5函数f(
3、x)=在的图像大致为ABCD6我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“ ”,如图就是一重卦在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是AB C D 7已知非零向量a,b满足,且b,则a与b的夹角为A BC D 8如图是求的程序框图,图中空白框中应填入AA=BA=CA=DA=9记为等差数列的前n项和已知,则ABCD10已知椭圆C的焦点为,过F2的直线与C交于A,B两点若,则C的方程为ABCD11关于函数有下述四个结论:f(x)是偶函数f(x)在区间(,)单调递增f(x)在有4个零点f(x)的最大值为2其中所有正确结论的编号是A
4、 BCD12已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,ABC是边长为2的正三角形,E,F分别是PA,AB的中点,CEF=90,则球O的体积为AB CD二、填空题:本题共4小题,每小题5分,共20分。13曲线在点处的切线方程为_14记Sn为等比数列an的前n项和若,则S5=_15甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是_16已知双曲线C:的左、右焦点分别为F1,F2,过F1的
5、直线与C的两条渐近线分别交于A,B两点若,则C的离心率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)的内角A,B,C的对边分别为a,b,c,设(1)求A;(2)若,求sinC18(12分)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角A-MA1-N的正弦值19(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的
6、交点为A,B,与x轴的交点为P(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|20(12分)已知函数,为的导数证明:(1)在区间存在唯一极大值点;(2)有且仅有2个零点21(12分)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验试验方案如下:每一轮选取两只白鼠对药效进行对比试验对于两只白鼠,随机选一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙
7、药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X(1)求的分布列;(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,其中,假设,(i)证明:为等比数列;(ii)求,并根据的值解释这种试验方案的合理性(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数)以坐标原点O为极点,x轴的正半轴为极轴建立
8、极坐标系,直线l的极坐标方程为(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值23选修45:不等式选讲(10分)已知a,b,c为正数,且满足abc=1证明:(1);(2)2019年普通高等学校招生全国统一考试理科数学解析一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则=A. B. C. D. 【答案】C【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养采取数轴法,利用数形结合的思想解题【详解】由题意得,则故选C总结:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部
9、分2.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D. 【答案】C【分析】本题考点为复数的运算,为基础题目,难度偏易此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C【详解】则故选C总结:本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养采取公式法或几何法,利用方程思想解题3.已知,则A. B. C. D. 【答案】B【分析】运用中间量比较,运用中间量比较【详解】则故选B总结:本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养采取中间变量法,利用转化与化归思想解题4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足
10、底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B【分析】理解黄金分割比例的含义,应用比例式列方程求解【详解】设人体脖子下端至腿根的长为x cm,肚脐至腿根的长为y cm,则,得又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为4207+515+105+26=17822,接近175cm故选B总结:本题考查类比归纳与合
11、情推理,渗透了逻辑推理和数学运算素养采取类比法,利用转化思想解题5.函数f(x)=在,的图像大致为A. B. C. D. 【答案】D【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案【详解】由,得是奇函数,其图象关于原点对称又故选D总结:本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养采取性质法或赋值法,利用数形结合思想解题6.我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“ ”,如图就是一重卦在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D. 【答案】A【分析】
12、本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算【详解】由题知,每一爻有2中情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A总结:对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题7.已知非零向量a,b满足=2,且(ab)b,则a与b的夹角为A.
13、B. C. D. 【答案】B【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B总结:对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为8.如图是求的程序框图,图中空白框中应填入A. A=B. A=C. A=D. A=【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出
14、作出选择【详解】执行第1次,是,因为第一次应该计算=,=2,循环,执行第2次,是,因为第二次应该计算=,=3,循环,执行第3次,否,输出,故循环体为,故选A总结:秒杀速解 认真观察计算式子的结构特点,可知循环体为9.记为等差数列的前n项和已知,则A. B. C. D. 【答案】A【分析】等差数列通项公式与前n项和公式本题还可用排除,对B,排除B,对C,排除C对D,排除D,故选A【详解】由题知,解得,故选A总结:本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断10.已知椭圆
15、C的焦点为,过F2的直线与C交于A,B两点.若,则C的方程为A. B. C. D. 【答案】B【分析】可以运用下面方法求解:如图,由已知可设,则,由椭圆的定义有在和中,由余弦定理得,又互补,两式消去,得,解得所求椭圆方程为,故选B【详解】如图,由已知可设,则,由椭圆的定义有在中,由余弦定理推论得在中,由余弦定理得,解得所求椭圆方程为,故选B总结:本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养11.关于函数有下述四个结论:f(x)是偶函数 f(x)在区间(,)单调递增f(x)在有4个零点 f(x)的最大值为2其中所有正确结论的编号是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 湖南省 高考 理科 数学试题 答案
限制150内