2019年河南省全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).docx
《2019年河南省全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).docx》由会员分享,可在线阅读,更多相关《2019年河南省全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019年全国统一高考数学试卷(理科)(新课标)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知集合Mx|4x2,Nx|x2x60,则MN()Ax|4x3Bx|4x2Cx|2x2Dx|2x32(5分)设复数z满足|zi|1,z在复平面内对应的点为(x,y),则()A(x+1)2+y21B(x1)2+y21Cx2+(y1)21Dx2+(y+1)213(5分)已知alog20.2,b20.2,c0.20.3,则()AabcBacbCcabDbca4(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.
2、618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A165cmB175cmC185cmD190cm5(5分)函数f(x)在,的图象大致为()A BC D6(5分)我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()ABCD7(5分)已知非零向量,满足|2|,且(),则与的夹角为()ABCD8(5分)如图是求的
3、程序框图,图中空白框中应填入()AABA2+CADA1+9(5分)记Sn为等差数列an的前n项和已知S40,a55,则()Aan2n5Ban3n10CSn2n28nDSnn22n10(5分)已知椭圆C的焦点为F1(1,0),F2(1,0),过F2的直线与C交于A,B两点若|AF2|2|F2B|,|AB|BF1|,则C的方程为()A+y21B+1C+1D+111(5分)关于函数f(x)sin|x|+|sinx|有下述四个结论:f(x)是偶函数f(x)在区间(,)单调递增f(x)在,有4个零点f(x)的最大值为2其中所有正确结论的编号是()ABCD12(5分)已知三棱锥PABC的四个顶点在球O的球
4、面上,PAPBPC,ABC是边长为2的正三角形,E,F分别是PA,AB的中点,CEF90,则球O的体积为()A8B4C2D二、填空题:本题共4小题,每小题5分,共20分。13(5分)曲线y3(x2+x)ex在点(0,0)处的切线方程为 14(5分)记Sn为等比数列an的前n项和若a1,a42a6,则S5 15(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 16(5分)已知双曲线C:1(a0,
5、b0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点若,0,则C的离心率为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)ABC的内角A,B,C的对边分别为a,b,c设(sinBsinC)2sin2AsinBsin C(1)求A;(2)若a+b2c,求sinC18(12分)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA14,AB2,BAD60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;
6、(2)求二面角AMA1N的正弦值19(12分)已知抛物线C:y23x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P(1)若|AF|+|BF|4,求l的方程;(2)若3,求|AB|20(12分)已知函数f(x)sinxln(1+x),f(x)为f(x)的导数证明:(1)f(x)在区间(1,)存在唯一极大值点;(2)f(x)有且仅有2个零点21(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验试验方案如下:每一轮选取两只白鼠对药效进行对比试验对于两只白鼠,随机选一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验当其中一种药治愈的
7、白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1分;若都治愈或都未治愈则两种药均得0分甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i0,1,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p00,p81,piapi1+bpi+cpi+1(i1,2,7),其中aP(X1),bP(X0),cP(X1)假设0
8、.5,0.8(i)证明:pi+1pi(i0,1,2,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程(10分)22(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos+sin+110(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值选修4-5:不等式选讲(10分)23已知a,b,c为正数,且满足abc1证明:(1)+a2+b2+c2;(2)(a+b)3
9、+(b+c)3+(c+a)3242019年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知集合Mx|4x2,Nx|x2x60,则MN()Ax|4x3Bx|4x2Cx|2x2Dx|2x3【分析】利用一元二次不等式的解法和交集的运算即可得出【解答】解:Mx|4x2,Nx|x2x60x|2x3,MNx|2x2故选:C【点评】本题考查了一元二次不等式的解法和交集的运算,属基础题2(5分)设复数z满足|zi|1,z在复平面内对应的点为(x,y),则()A(x+1)2+y21B(x1
10、)2+y21Cx2+(y1)21Dx2+(y+1)21【分析】由z在复平面内对应的点为(x,y),可得zx+yi,然后根据|zi|1即可得解【解答】解:z在复平面内对应的点为(x,y),zx+yi,zix+(y1)i,|zi|,x2+(y1)21,故选:C【点评】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题3(5分)已知alog20.2,b20.2,c0.20.3,则()AabcBacbCcabDbca【分析】由指数函数和对数函数的单调性易得log20.20,20.21,00.20.31,从而得出a,b,c的大小关系【解答】解:alog20.2log210,b2
11、0.2201,00.20.30.201,c0.20.3(0,1),acb,故选:B【点评】本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题4(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A165cmB175cmC185cmD190cm【分析】充分运用黄金分割比例,结合图形,计算可估计身高【解答】解:头顶至脖子下端的长度为26
12、cm,说明头顶到咽喉的长度小于26cm,由头顶至咽喉的长度与咽喉至肚脐的长度之比是0.618,可得咽喉至肚脐的长度小于42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是,可得肚脐至足底的长度小于110,即有该人的身高小于110+68178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于1050.61865cm,即该人的身高大于65+105170cm,故选:B【点评】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题5(5分)函数f(x)在,的图象大致为()A BC D【分析】由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(),判断正负即可排除B,C【解答】
13、解:f(x),x,f(x)f(x),f(x)为,上的奇函数,因此排除A;又f(),因此排除B,C;故选:D【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题6(5分)我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()ABCD【分析】基本事件总数n2664,该重卦恰有3个阳爻包含的基本个数m20,由此能求出该重卦恰有3个阳爻的概率【解答】解:在所有重卦中随机取一重卦,基本事件总数n2664,该重卦恰有3个阳爻包含的基本个数m20,则该重卦恰有3个阳爻的
14、概率p故选:A【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题7(5分)已知非零向量,满足|2|,且(),则与的夹角为()ABCD【分析】由(),可得,进一步得到,然后求出夹角即可【解答】解:(),故选:B【点评】本题考查了平面向量的数量积和向量的夹角,属基础题8(5分)如图是求的程序框图,图中空白框中应填入()AABA2+CADA1+【分析】模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解【解答】解:模拟程序的运行,可得:A,k1;满足条件k2,执行循环体,A,k2;满足条件k2,执行循环体,A,k3;此时,不满足条件k2,退出循环,
15、输出A的值为,观察A的取值规律可知图中空白框中应填入A故选:A【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题9(5分)记Sn为等差数列an的前n项和已知S40,a55,则()Aan2n5Ban3n10CSn2n28nDSnn22n【分析】根据题意,设等差数列an的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可【解答】解:设等差数列an的公差为d,由S40,a55,得,an2n5,故选:A【点评】本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题10(5分)已知椭圆C的焦点为F1(1,0),
16、F2(1,0),过F2的直线与C交于A,B两点若|AF2|2|F2B|,|AB|BF1|,则C的方程为()A+y21B+1C+1D+1【分析】根据椭圆的定义以及余弦定理列方程可解得a,b,可得椭圆的方程【解答】解:|AF2|2|BF2|,|AB|3|BF2|,又|AB|BF1|,|BF1|3|BF2|,又|BF1|+|BF2|2a,|BF2|,|AF2|a,|BF1|a,|AF1|+|AF2|2a,|AF1|a,|AF1|AF2|,A在y轴上在RtAF2O中,cosAF2O,在BF1F2中,由余弦定理可得cosBF2F1,根据cosAF2O+cosBF2F10,可得+0,解得a23,ab2a2
17、c2312所以椭圆C的方程为:+1故选:B【点评】本题考查了椭圆的性质,属中档题11(5分)关于函数f(x)sin|x|+|sinx|有下述四个结论:f(x)是偶函数f(x)在区间(,)单调递增f(x)在,有4个零点f(x)的最大值为2其中所有正确结论的编号是()ABCD【分析】根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可【解答】解:f(x)sin|x|+|sin(x)|sin|x|+|sinx|f(x)则函数f(x)是偶函数,故正确,当x(,)时,sin|x|sinx,|sinx|sinx,则f(x)sinx+sinx2sinx为减函数,故错误,当0x时,f(x)sin|x|+
18、|sinx|sinx+sinx2sinx,由f(x)0得2sinx0得x0或x,由f(x)是偶函数,得在,)上还有一个零点x,即函数f(x)在,有3个零点,故错误,当sin|x|1,|sinx|1时,f(x)取得最大值2,故正确,故正确是,故选:C【点评】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键12(5分)已知三棱锥PABC的四个顶点在球O的球面上,PAPBPC,ABC是边长为2的正三角形,E,F分别是PA,AB的中点,CEF90,则球O的体积为()A8B4C2D【分析】由题意画出图形,证明三棱锥PABC为正三棱锥,且三条侧棱两两互相垂
19、直,再由补形法求外接球球O的体积【解答】解:如图,由PAPBPC,ABC是边长为2的正三角形,可知三棱锥PABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则ACBG,又POAC,POBGO,可得AC平面PBG,则PBAC,E,F分别是PA,AB的中点,EFPB,又CEF90,即EFCE,PBCE,得PB平面PAC,正三棱锥PABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D半径为,则球O的体积为故选:D【点评】本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题二、填空题:本题共
20、4小题,每小题5分,共20分。13(5分)曲线y3(x2+x)ex在点(0,0)处的切线方程为y3x【分析】对y3(x2+x)ex求导,可将x0代入导函数,求得斜率,即可得到切线方程【解答】解:y3(x2+x)ex,y3ex(x2+3x+1),当x0时,y3,y3(x2+x)ex在点(0,0)处的切线斜率k3,切线方程为:y3x故答案为:y3x【点评】本题考查了利用导数研究函数上某点的切线方程,切点处的导数值为斜率是解题关键,属基础题14(5分)记Sn为等比数列an的前n项和若a1,a42a6,则S5【分析】根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可【解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 河南省 全国 统一 高考 数学试卷 理科 新课 解析
限制150内