2020年湖南省高考理科数学试题及答案.docx
《2020年湖南省高考理科数学试题及答案.docx》由会员分享,可在线阅读,更多相关《2020年湖南省高考理科数学试题及答案.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题).1若z1+i,则|z22z|()A0B1CD22设集合Ax|x240,Bx|2x+a0,且ABx|2x1,则a()A4B2C2D43埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()ABCD4已知A为抛物线C:y22px(p0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p()A2B3C6D95某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:)的关系,在20个不同
2、的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i1,2,20)得到下面的散点图:由此散点图,在10至40之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()Aya+bxBya+bx2Cya+bexDya+blnx6函数f(x)x42x3的图象在点(1,f(1)处的切线方程为()Ay2x1By2x+1Cy2x3Dy2x+17设函数f(x)cos(x+)在,的图象大致如图,则f(x)的最小正周期为()ABCD8(x+)(x+y)5的展开式中x3y3的系数为()A5B10C15D209已知(0,),且3cos28cos5,则sin()ABCD10已知A,B,C为球O
3、的球面上的三个点,O1为ABC的外接圆若O1的面积为4,ABBCACOO1,则球O的表面积为()A64B48C36D3211已知M:x2+y22x2y20,直线1:2x+y+20,P为l上的动点过点P作M的切线PA,PB,切点为A,B,当|PM|AB|最小时,直线AB的方程为()A2xy10B2x+y10C2xy+10D2x+y+1012若2a+log2a4b+2log4b,则()Aa2bBa2bCab2Dab2二、填空题:本题共4小题,每小题5分,共20分。13若x,y满足约束条件则zx+7y的最大值为 14设,为单位向量,且|+|1,则| 15已知F为双曲线C:1(a0,b0)的右焦点,A
4、为C的右顶点,B为C上的点,且BF垂直于x轴若AB的斜率为3,则C的离心率为 16如图,在三棱锥PABC的平面展开图中,AC1,ABAD,ABAC,ABAD,CAE30,则cosFCB 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17设an是公比不为1的等比数列,a1为a2,a3的等差中项(1)求an的公比;(2)若a1l,求数列nan的前n项和18如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AEADABC是底面的内接正三角形,P为DO上一点,PODO
5、(1)证明:PA平面PBC;(2)求二面角BPCE的余弦值19甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束经抽签,甲、乙首先比赛,丙轮空设每场比赛双方获胜的概率都为(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率20已知A,B分别为椭圆E:+y21(a1)的左、右顶点,G为E的上顶点,8P为直线x6上的动点,PA与E的另一交点为C,PB与E的另
6、一交点为D(1)求E的方程;(2)证明:直线CD过定点21已知函数f(x)ex+ax2x(1)当a1时,讨论f(x)的单调性;(2)当x0时,f(x)x3+1,求a的取值范围(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程22在直角坐标系xOy中,曲线C1的参数方程为(t为参数)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4cos16sin+30(1)当k1时,C1是什么曲线?(2)当k4时,求C1与C2的公共点的直角坐标选修4-5:不等式选讲23已知函数f(x)|3x+1|2|x1|(1)画出
7、yf(x)的图象;(2)求不等式f(x)f(x+1)的解集参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若z1+i,则|z22z|()A0B1CD2【分析】由复数的乘方和加减运算,化简z22z,再由复数的模的定义,计算可得所求值解:若z1+i,则z22z(1+i)22(1+i)2i22i2,则|z22z|2|2,故选:D2设集合Ax|x240,Bx|2x+a0,且ABx|2x1,则a()A4B2C2D4【分析】由二次不等式和一次不等式的解法,化简集合A,B,再由交集的定义,可得a的方程,解方程可得a解:集合Ax|x240x|2x
8、2,Bx|2x+a0x|xa,由ABx|2x1,可得a1,则a2故选:B3埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()ABCD【分析】先根据正四棱锥的几何性质列出等量关系,进而求解结论解:设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为h,则依题意有:,因此有h2()2ah4()22()10;(负值舍)故选:C4已知A为抛物线C:y22px(p0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p()A2B3C6D9【分析】直接利用抛物线的
9、性质解题即可解:因为A为抛物线C:y22px(p0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等;故有:9+12p6;故选:C5某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i1,2,20)得到下面的散点图:由此散点图,在10至40之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()Aya+bxBya+bx2Cya+bexDya+blnx【分析】直接由散点图结合给出的选项得答案解:由散点图可知,在10至40之间,发芽率y和
10、温度x所对应的点(x,y)在一段对数函数的曲线附近,结合选项可知,ya+blnx可作为发芽率y和温度x的回归方程类型故选:D6函数f(x)x42x3的图象在点(1,f(1)处的切线方程为()Ay2x1By2x+1Cy2x3Dy2x+1【分析】求出原函数的导函数,得到函数在x1处的导数,再求得f(1),然后利用直线方程的点斜式求解解:由f(x)x42x3,得f(x)4x36x,f(1)462,又f(1)121,函数f(x)x42x3的图象在点(1,f(1)处的切线方程为y(1)2(x1),即y2x+1故选:B7设函数f(x)cos(x+)在,的图象大致如图,则f(x)的最小正周期为()ABCD【
11、分析】由图象观察可得最小正周期小于,大于,排除A,D;再由f()0,求得,对照选项B,C,代入计算,即可得到结论解:由图象可得最小正周期小于(),大于2(),排除A,D;由图象可得f()cos(+)0,即为+k+,kZ,(*)若选B,即有,由+k+,可得k不为整数,排除B;若选C,即有,由+k+,可得k1,成立故选:C8(x+)(x+y)5的展开式中x3y3的系数为()A5B10C15D20【分析】先把条件整理转化为求(x2+y2)(x+y)5展开式中x4y3的系数,再结合二项式的展开式的特点即可求解解:因为(x+)(x+y)5;要求展开式中x3y3的系数即为求(x2+y2)(x+y)5展开式
12、中x4y3的系数;展开式含x4y3的项为:x2x2y3+y2x4y15x4y3;故(x+)(x+y)5的展开式中x3y3的系数为15;故选:C9已知(0,),且3cos28cos5,则sin()ABCD【分析】利用二倍角的余弦把已知等式变形,化为关于cos的一元二次方程,求解后再由同角三角函数基本关系式求得sin的值解:由3cos28cos5,得3(2cos21)8cos50,即3cos24cos40,解得cos2(舍去),或cos(0,),(,),则sin故选:A10已知A,B,C为球O的球面上的三个点,O1为ABC的外接圆若O1的面积为4,ABBCACOO1,则球O的表面积为()A64B4
13、8C36D32【分析】画出图形,利用已知条件求出OO1,然后求解球的半径,即可求解球的表面积解:由题意可知图形如图:O1的面积为4,可得O1A2,则AO1ABsin60,ABBCACOO12,外接球的半径为:R4,球O的表面积:44264故选:A11已知M:x2+y22x2y20,直线1:2x+y+20,P为l上的动点过点P作M的切线PA,PB,切点为A,B,当|PM|AB|最小时,直线AB的方程为()A2xy10B2x+y10C2xy+10D2x+y+10【分析】由已知结合四边形面积公式及三角形面积公式可得|PM|AB|,说明要使|PM|AB|最小,则需|PM|最小,此时PM与直线l垂直写出
14、PM所在直线方程,与直线l的方程联立,求得P点坐标,然后写出以PM为直径的圆的方程,再与圆M的方程联立可得AB所在直线方程解:化圆M为(x1)2+(y1)24,圆心M(1,1),半径r22SPAM|PA|AM|2|PA|要使|PM|AB|最小,则需|PM|最小,此时PM与直线l垂直直线PM的方程为y1(x1),即y,联立,解得P(1,0)则以PM为直径的圆的方程为联立,可得直线AB的方程为2x+y+10故选:D12若2a+log2a4b+2log4b,则()Aa2bBa2bCab2Dab2【分析】先根据指数函数以及对数函数的性质得到2a+log2a22b+log22b;再借助于函数的单调性即可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 湖南省 高考 理科 数学试题 答案
限制150内