《2019年甘肃省全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).docx》由会员分享,可在线阅读,更多相关《2019年甘肃省全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019年全国统一高考数学试卷(理科)(新课标)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)设集合Ax|x25x+60,Bx|x10,则AB()A(,1)B(2,1)C(3,1)D(3,+)2(5分)设z3+2i,则在复平面内对应的点位于()A第一象限B第二象限C第三象限D第四象限3(5分)已知(2,3),(3,t),|1,则()A3B2C2D34(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系为解决这
2、个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行L2点是平衡点,位于地月连线的延长线上设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:+(R+r)设由于的值很小,因此在近似计算中33,则r的近似值为()ARBRCRDR5(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A中位数B平均数C方差D极差6(5分)若ab,则()Aln(ab)0B3a3bCa3b30D|
3、a|b|7(5分)设,为两个平面,则的充要条件是()A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面8(5分)若抛物线y22px(p0)的焦点是椭圆+1的一个焦点,则p()A2B3C4D89(5分)下列函数中,以为周期且在区间(,)单调递增的是()Af(x)|cos2x|Bf(x)|sin2x|Cf(x)cos|x|Df(x)sin|x|10(5分)已知(0,),2sin2cos2+1,则sin()ABCD11(5分)设F为双曲线C:1(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2a2交于P,Q两点若|PQ|OF|,则C的离心率为()A
4、BC2D12(5分)设函数f(x)的定义域为R,满足f(x+1)2f(x),且当x(0,1时,f(x)x(x1)若对任意x(,m,都有f(x),则m的取值范围是()A(,B(,C(,D(,二、填空题:本题共4小题,每小题5分,共20分。13(5分)我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 14(5分)已知f(x)是奇函数,且当x0时,f(x)eax若f(ln2)8,则a 15(5分)ABC的内角A,B,C的对边分别为a,b,c若b6,
5、a2c,B,则ABC的面积为 16(5分)中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1)半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有 个面,其棱长为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)如图,长方体ABCDA
6、1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:BE平面EB1C1;(2)若AEA1E,求二面角BECC1的正弦值18(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束(1)求P(X2);(2)求事件“X4且甲获胜”的概率19(12分)已知数列an和bn满足a11,b10,4an+13anbn+4,4bn+13bnan4(
7、1)证明:an+bn是等比数列,anbn是等差数列;(2)求an和bn的通项公式20(12分)已知函数f(x)lnx(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线ylnx在点A(x0,lnx0)处的切线也是曲线yex的切线21(12分)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为记M的轨迹为曲线C(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G(i)证明:PQG是直角三角形;(ii)求PQG面积的最大值(二)选考题
8、:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程(10分)22(10分)在极坐标系中,O为极点,点M(0,0)(00)在曲线C:4sin上,直线l过点A(4,0)且与OM垂直,垂足为P(1)当0时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程选修4-5:不等式选讲(10分)23已知f(x)|xa|x+|x2|(xa)(1)当a1时,求不等式f(x)0的解集;(2)当x(,1)时,f(x)0,求a的取值范围2019年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本题共12小
9、题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)设集合Ax|x25x+60,Bx|x10,则AB()A(,1)B(2,1)C(3,1)D(3,+)【分析】根据题意,求出集合A、B,由交集的定义计算可得答案【解答】解:根据题意,Ax|x25x+60x|x3或x2,Bx|x10x|x1,则ABx|x1(,1);故选:A【点评】本题考查交集的计算,关键是掌握交集的定义,属于基础题2(5分)设z3+2i,则在复平面内对应的点位于()A第一象限B第二象限C第三象限D第四象限【分析】求出z的共轭复数,根据复数的几何意义求出复数所对应点的坐标即可【解答】解:z3+2i
10、,在复平面内对应的点为(3,2),在第三象限故选:C【点评】本题考查共轭复数的代数表示及其几何意义,属基础题3(5分)已知(2,3),(3,t),|1,则()A3B2C2D3【分析】由先求出的坐标,然后根据|1,可求t,结合向量数量积定义的坐标表示即可求解【解答】解:(2,3),(3,t),(1,t3),|1,t30即(1,0),则2故选:C【点评】本题主要考查了向量数量积 的定义及性质的坐标表示,属于基础试题4(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系为解决这个
11、问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行L2点是平衡点,位于地月连线的延长线上设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:+(R+r)设由于的值很小,因此在近似计算中33,则r的近似值为()ARBRCRDR【分析】由推导出33,由此能求出rR【解答】解:rR,r满足方程:+(R+r)33,rR故选:D【点评】本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题5(5分)演讲比赛共有9位评委分别给出某选手的原始评分
12、,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A中位数B平均数C方差D极差【分析】根据题意,由数据的数字特征的定义,分析可得答案【解答】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:A【点评】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题6(5分)若ab,则()Aln(ab)0B3a3bCa3b30D|a|b|【分析】取a0,b1,利用特殊值法可得正确选项
13、【解答】解:取a0,b1,则ln(ab)ln10,排除A;,排除B;a303(1)31b3,故C对;|a|0|1|1b,排除D故选:C【点评】本题考查了不等式的基本性质,利用特殊值法可迅速得到正确选项,属基础题7(5分)设,为两个平面,则的充要条件是()A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面【分析】充要条件的定义结合面面平行的判定定理可得结论【解答】解:对于A,内有无数条直线与平行,或;对于B,内有两条相交直线与平行,;对于C,平行于同一条直线,或;对于D,垂直于同一平面,或故选:B【点评】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能
14、力,属于基础题8(5分)若抛物线y22px(p0)的焦点是椭圆+1的一个焦点,则p()A2B3C4D8【分析】根据抛物线的性质以及椭圆的性质列方程可解得【解答】解:由题意可得:3pp()2,解得p8故选:D【点评】本题考查了抛物线与椭圆的性质,属基础题9(5分)下列函数中,以为周期且在区间(,)单调递增的是()Af(x)|cos2x|Bf(x)|sin2x|Cf(x)cos|x|Df(x)sin|x|【分析】根据正弦函数,余弦函数的周期性及单调性依次判断,利用排除法即可求解【解答】解:f(x)sin|x|不是周期函数,可排除D选项;f(x)cos|x|的周期为2,可排除C选项;f(x)|sin
15、2x|在处取得最大值,不可能在区间(,)单调递增,可排除B故选:A【点评】本题主要考查了正弦函数,余弦函数的周期性及单调性,考查了排除法的应用,属于基础题10(5分)已知(0,),2sin2cos2+1,则sin()ABCD【分析】由二倍角的三角函数公式化简已知可得4sincos2cos2,结合角的范围可求sin0,cos0,可得cos2sin,根据同角三角函数基本关系式即可解得sin的值【解答】解:2sin2cos2+1,可得:4sincos2cos2,(0,),sin0,cos0,cos2sin,sin2+cos2sin2+(2sin)25sin21,解得:sin故选:B【点评】本题主要考
16、查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题11(5分)设F为双曲线C:1(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2a2交于P,Q两点若|PQ|OF|,则C的离心率为()ABC2D【分析】由题意画出图形,先求出PQ,再由|PQ|OF|列式求C的离心率【解答】解:如图,由题意,把x代入x2+y2a2,得PQ,再由|PQ|OF|,得,即2a2c2,解得e故选:A【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题12(5分)设函数f(x)的定义域为R,满足f(x+1)2f(x),且当x(0,1时,
17、f(x)x(x1)若对任意x(,m,都有f(x),则m的取值范围是()A(,B(,C(,D(,【分析】因为f(x+1)2f(x),f(x)2f(x1),分段求解析式,结合图象可得【解答】解:因为f(x+1)2f(x),f(x)2f(x1),x(0,1时,f(x)x(x1),0,x(1,2时,x1(0,1,f(x)2f(x1)2(x1)(x2),0;x(2,3时,x1(1,2,f(x)2f(x1)4(x2)(x3)1,0,当x(2,3时,由4(x2)(x3)解得x或x,若对任意x(,m,都有f(x),则m故选:B【点评】本题考查了函数与方程的综合运用,属中档题二、填空题:本题共4小题,每小题5分
18、,共20分。13(5分)我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为0.98【分析】利用加权平均数公式直接求解【解答】解:经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,经停该站高铁列车所有车次的平均正点率的估计值为:(100.97+200.98+100.99)0.98故答案为:0.98【点评】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加
19、权平均数公式等基础知识,考查推理能力与计算能力,属于基础题14(5分)已知f(x)是奇函数,且当x0时,f(x)eax若f(ln2)8,则a3【分析】奇函数的定义结合对数的运算可得结果【解答】解:f(x)是奇函数,f(ln2)8,又当x0时,f(x)eax,f(ln2)ealn28,aln2ln8,a3故答案为:3【点评】本题主要考查函数奇偶性的应用,对数的运算性质,属于基础题15(5分)ABC的内角A,B,C的对边分别为a,b,c若b6,a2c,B,则ABC的面积为【分析】利用余弦定理得到c2,然后根据面积公式SABCacsinBc2sinB求出结果即可【解答】解:由余弦定理有b2a2+c2
20、2accosB,b6,a2c,B,36(2c)2+c24c2cos,c212,SABC,故答案为:6【点评】本题考查了余弦定理和三角形的面积公式,属基础题16(5分)中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1)半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有26个面,其棱长为1【分析】中间层是一个正八棱柱,有8个侧面,上层是有8+1,个面,下层也有8+1个面,
21、故共有26个面;半正多面体的棱长为中间层正八棱柱的棱长加上两个棱长的cos45倍【解答】解:该半正多面体共有8+8+8+226个面,设其棱长为x,则x+x+x1,解得x1故答案为:26,1【点评】本题考查了球内接多面体,属中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:BE平面EB1C1;(2)若AEA1E,求二面角BECC1的正弦值【分析】(1)推导
22、出B1C1BE,BEEC1,由此能证明BE平面EB1C1(2)以C为坐标原点,建立如图所示的空间直角坐标系,利用向量法能求出二面角BECC1的正弦值【解答】证明:(1)长方体ABCDA1B1C1D1中,B1C1平面ABA1B1,B1C1BE,BEEC1,BE平面EB1C1解:(2)以C为坐标原点,建立如图所示的空间直角坐标系,设AEA1E1,BE平面EB1C1,BEEB1,AB1,则E(1,1,1),A(1,1,0),B1(0,1,2),C1(0,0,2),C(0,0,0),BCEB1,EB1面EBC,故取平面EBC的法向量为(1,0,1),设平面ECC1 的法向量(x,y,z),由,得,取x
23、1,得(1,1,0),cos,二面角BECC1的正弦值为【点评】本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题18(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束(1)求P(X2);(2)求事件“X4且甲获胜”的概率【分析】(1)设双方10:10平后的第k个球甲获胜
24、为事件Ak(k1,2,3,),则P(X2)P(A1A2)+P()P(A1)P(A2)+P()P(),由此能求出结果(2)P(X4且甲获胜)P(A2A3A4)+P()P()P(A2)P(A3)P(A4)+P(A1)P()P(A3)P(A4),由此能求出事件“X4且甲获胜”的概率【解答】解:(1)设双方10:10平后的第k个球甲获胜为事件Ak(k1,2,3,),则P(X2)P(A1A2)+P()P(A1)P(A2)+P()P()0.50.4+0.50.60.5(2)P(X4且甲获胜)P(A2A3A4)+P()P()P(A2)P(A3)P(A4)+P(A1)P()P(A3)P(A4)(0.50.4+
25、0.50.6)0.50.40.1【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题19(12分)已知数列an和bn满足a11,b10,4an+13anbn+4,4bn+13bnan4(1)证明:an+bn是等比数列,anbn是等差数列;(2)求an和bn的通项公式【分析】(1)定义法证明即可;(2)由(1)结合等差、等比的通项公式可得【解答】解:(1)证明:4an+13anbn+4,4bn+13bnan4;4(an+1+bn+1)2(an+bn),4(an+1bn+1)4(anbn)+8;即an+1+bn+1(an+bn),an+1bn+1an
26、bn+2;又a1+b11,a1b11,an+bn是首项为1,公比为的等比数列,anbn是首项为1,公差为2的等差数列;(2)由(1)可得:an+bn()n1,anbn1+2(n1)2n1;an()n+n,bn()nn+【点评】本题考查了等差、等比数列的定义和通项公式,是基础题20(12分)已知函数f(x)lnx(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线ylnx在点A(x0,lnx0)处的切线也是曲线yex的切线【分析】(1)讨论f(x)的单调性,求函数导数,在定义域内根据函数零点大致区间求零点个数,(2)运用曲线的切线方程定义可证明【
27、解答】解析:(1)函数f(x)lnx定义域为:(0,1)(1,+);f(x)+0,(x0且x1),f(x)在(0,1)和(1,+)上单调递增,在(0,1)区间取值有,代入函数,由函数零点的定义得,f()0,f()0,f()f()0,f(x)在(0,1)有且仅有一个零点,在(1,+)区间,区间取值有e,e2代入函数,由函数零点的定义得,又f(e)0,f(e2)0,f(e)f(e2)0,f(x)在(1,+)上有且仅有一个零点,故f(x)在定义域内有且仅有两个零点;(2)x0是f(x)的一个零点,则有lnx0,曲线ylnx,则有y;曲线ylnx在点A(x0,lnx0)处的切线方程为:ylnx0(xx
28、0)即:yx1+lnx0即:yx+而曲线yex的切线在点(ln,)处的切线方程为:y(xln),即:yx+,故曲线ylnx在点A(x0,lnx0)处的切线也是曲线yex的切线故得证【点评】本题考查f(x)的单调性,函数导数,在定义域内根据函数零点大致区间求零点个数,以及利用曲线的切线方程定义证明21(12分)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为记M的轨迹为曲线C(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G(i)证明:PQG是直角三角形;(ii)求PQG面积的
29、最大值【分析】(1)利用直接法不难得到方程;(2)(i)设P(x0,y0),则Q(x0,y0),E(x0,0),利用直线QE的方程与椭圆方程联立求得G点坐标,去证PQ,PG斜率之积为1;(ii)利用S,代入已得数据,并对换元,利用“对号”函数可得最值【解答】解:(1)由题意得,整理得曲线C的方程:,曲线C是焦点在x轴上不含长轴端点的椭圆;(2)(i)设P(x0,y0),则Q(x0,y0),E(x0,0),G(xG,yG),直线QE的方程为:,与联立消去y,得,把代入上式,得kPG,kPQkPG1,PQPG,故PQG为直角三角形;(ii)SPQG令t,则t2,SPQG利用“对号”函数f(t)2t
30、+在2,+)的单调性可知,f(t)(t2时取等号),(此时),故PQG面积的最大值为【点评】此题考查了直接法求曲线方程,直线与椭圆的综合,换元法等,对运算能力考查尤为突出,难度大(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程(10分)22(10分)在极坐标系中,O为极点,点M(0,0)(00)在曲线C:4sin上,直线l过点A(4,0)且与OM垂直,垂足为P(1)当0时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程【分析】(1)把0直接代入4sin即可求得0,在直线l上任取一点(
31、,),利用三角形中点边角关系即可求得l的极坐标方程;(2)设P(,),在RtOAP中,根据边与角的关系得答案【解答】解:(1)当0时,在直线l上任取一点(,),则有,故l的极坐标方程为有;(2)设P(,),则在RtOAP中,有4cos,P在线段OM上,故P点轨迹的极坐标方程为4cos,【点评】本题考查解得曲线的极坐标方程及其应用,画图能够起到事半功倍的作用,是基础题选修4-5:不等式选讲(10分)23已知f(x)|xa|x+|x2|(xa)(1)当a1时,求不等式f(x)0的解集;(2)当x(,1)时,f(x)0,求a的取值范围【分析】(1)将a1代入得f(x)|x1|x+|x2|(x1),然后分x1和x1两种情况讨论f(x)0即可;(2)根据条件分a1和a1两种情况讨论即可【解答】解:(1)当a1时,f(x)|x1|x+|x2|(x1),f(x)0,当x1时,f(x)2(x1)20,恒成立,x1;当x1时,f(x)(x1)(x+|x2|)0恒成立,x;综上,不等式的解集为(,1);(2)当a1时,f(x)2(ax)(x1)0在x(,1)上恒成立;当a1时,x(a,1),f(x)2(xa)0,不满足题意,a的取值范围为:1,+)【点评】本题考查了绝对值不等式的解法,考查了分类讨论思想,属中档题第23页(共23页)
限制150内