2018年甘肃省全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).docx
《2018年甘肃省全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).docx》由会员分享,可在线阅读,更多相关《2018年甘肃省全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版).docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2018年全国统一高考数学试卷(理科)(新课标)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)=()AiBCD2(5分)已知集合A=(x,y)|x2+y23,xZ,yZ,则A中元素的个数为()A9B8C5D43(5分)函数f(x)=的图象大致为()ABCD4(5分)已知向量,满足|=1,=1,则(2)=()A4B3C2D05(5分)双曲线=1(a0,b0)的离心率为,则其渐近线方程为()Ay=xBy=xCy=xDy=x6(5分)在ABC中,cos=,BC=1,AC=5,则AB=()A4BCD27(5分)为计算S=1+,设计了如图
2、的程序框图,则在空白框中应填入()Ai=i+1Bi=i+2Ci=i+3Di=i+48(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()ABCD9(5分)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()ABCD10(5分)若f(x)=cosxsinx在a,a是减函数,则a的最大值是()ABCD11(5分)已知f(x)是定义域为(,+)的奇函数,满足f(1x)=f(1+x),若f(1)
3、=2,则f(1)+f(2)+f(3)+f(50)=()A50B0C2D5012(5分)已知F1,F2是椭圆C:=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,PF1F2为等腰三角形,F1F2P=120,则C的离心率为()ABCD二、填空题:本题共4小题,每小题5分,共20分。13(5分)曲线y=2ln(x+1)在点(0,0)处的切线方程为 14(5分)若x,y满足约束条件,则z=x+y的最大值为 15(5分)已知sin+cos=1,cos+sin=0,则sin(+)= 16(5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45,若SAB的
4、面积为5,则该圆锥的侧面积为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根要求作答。(一)必考题:共60分。17(12分)记Sn为等差数列an的前n项和,已知a1=7,S3=15(1)求an的通项公式;(2)求Sn,并求Sn的最小值18(12分)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型根据2000年至2016年的数据(时间变量t的值依次为1,2,17)建立模型:=30.4+13.5t
5、;根据2010年至2016年的数据(时间变量t的值依次为1,2,7)建立模型:=99+17.5t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由19(12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|=8(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程20(12分)如图,在三棱锥PABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点(1)证明:PO平面ABC;(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值
6、21(12分)已知函数f(x)=exax2(1)若a=1,证明:当x0时,f(x)1;(2)若f(x)在(0,+)只有一个零点,求a(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程22(10分)在直角坐标系xOy中,曲线C的参数方程为,(为参数),直线l的参数方程为,(t为参数)(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率选修4-5:不等式选讲23设函数f(x)=5|x+a|x2|(1)当a=1时,求不等式f(x)0的解集;(2)若f(x)1,求a的取值范围2018年全国
7、统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)=()AiBCD【考点】A5:复数的运算菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;5N:数系的扩充和复数【分析】利用复数的除法的运算法则化简求解即可【解答】解:=+故选:D【点评】本题考查复数的代数形式的乘除运算,是基本知识的考查2(5分)已知集合A=(x,y)|x2+y23,xZ,yZ,则A中元素的个数为()A9B8C5D4【考点】1A:集合中元素个数的最值菁优网版权所有【专题】32:分类讨论;4O:定义法
8、;5J:集合【分析】分别令x=1,0,1,进行求解即可【解答】解:当x=1时,y22,得y=1,0,1,当x=0时,y23,得y=1,0,1,当x=1时,y22,得y=1,0,1,即集合A中元素有9个,故选:A【点评】本题主要考查集合元素个数的判断,利用分类讨论的思想是解决本题的关键3(5分)函数f(x)=的图象大致为()ABCD【考点】3A:函数的图象与图象的变换;6B:利用导数研究函数的单调性菁优网版权所有【专题】33:函数思想;4R:转化法;51:函数的性质及应用【分析】判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可【解答】解:函数f(x)=f(x),则函数f(x)为奇函数
9、,图象关于原点对称,排除A,当x=1时,f(1)=e0,排除D当x+时,f(x)+,排除C,故选:B【点评】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键4(5分)已知向量,满足|=1,=1,则(2)=()A4B3C2D0【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算菁优网版【专题】11:计算题;38:对应思想;4O:定义法;5A:平面向量及应用【分析】根据向量的数量积公式计算即可【解答】解:向量,满足|=1,=1,则(2)=2=2+1=3,故选:B【点评】本题考查了向量的数量积公式,属于基础题5(5分)双曲线=1(a0,b0)的离心
10、率为,则其渐近线方程为()Ay=xBy=xCy=xDy=x【考点】KC:双曲线的性质菁优网版权所有【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程【分析】根据双曲线离心率的定义求出a,c的关系,结合双曲线a,b,c的关系进行求解即可【解答】解:双曲线的离心率为e=,则=,即双曲线的渐近线方程为y=x=x,故选:A【点评】本题主要考查双曲线渐近线的求解,结合双曲线离心率的定义以及渐近线的方程是解决本题的关键6(5分)在ABC中,cos=,BC=1,AC=5,则AB=()A4BCD2【考点】HR:余弦定理菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;58:
11、解三角形【分析】利用二倍角公式求出C的余弦函数值,利用余弦定理转化求解即可【解答】解:在ABC中,cos=,cosC=2=,BC=1,AC=5,则AB=4故选:A【点评】本题考查余弦定理的应用,考查三角形的解法以及计算能力7(5分)为计算S=1+,设计了如图的程序框图,则在空白框中应填入()Ai=i+1Bi=i+2Ci=i+3Di=i+4【考点】E7:循环结构;EH:绘制程序框图解决问题菁优网版权所有【专题】38:对应思想;4B:试验法;5K:算法和程序框图【分析】模拟程序框图的运行过程知该程序运行后输出的S=NT,由此知空白处应填入的条件【解答】解:模拟程序框图的运行过程知,该程序运行后输出
12、的是S=NT=(1)+()+();累加步长是2,则在空白处应填入i=i+2故选:B【点评】本题考查了循环程序的应用问题,是基础题8(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()ABCD【考点】CB:古典概型及其概率计算公式菁优网版权所有【专题】36:整体思想;4O:定义法;5I:概率与统计【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可【解答】解:在不超过30的素数中有,2,3,5,7,11,13,17
13、,19,23,29共10个,从中选2个不同的数有=45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P=,故选:C【点评】本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键9(5分)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()ABCD【考点】LM:异面直线及其所成的角菁优网版权所有【专题】11:计算题;31:数形结合;41:向量法;5G:空间角【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值【解
14、答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=,A(1,0,0),D1(0,0,),D(0,0,0),B1(1,1,),=(1,0,),=(1,1,),设异面直线AD1与DB1所成角为,则cos=,异面直线AD1与DB1所成角的余弦值为故选:C【点评】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题10(5分)若f(x)=cosxsinx在a,a是减函数,则a的最大值是()ABCD【考点】GP:两角和与差的三角函数;H
15、5:正弦函数的单调性菁优网版权所有【专题】33:函数思想;4R:转化法;56:三角函数的求值【分析】利用两角和差的正弦公式化简f(x),由,kZ,得,kZ,取k=0,得f(x)的一个减区间为,结合已知条件即可求出a的最大值【解答】解:f(x)=cosxsinx=(sinxcosx)=,由,kZ,得,kZ,取k=0,得f(x)的一个减区间为,由f(x)在a,a是减函数,得,则a的最大值是故选:A【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题11(5分)已知f(x)是定义域为(,+)的奇函数,满足f(1x)=f(1+x),若f(1)=2,则f(1)+
16、f(2)+f(3)+f(50)=()A50B0C2D50【考点】3K:函数奇偶性的性质与判断菁优网版权所有【专题】36:整体思想;4O:定义法;51:函数的性质及应用【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可【解答】解:f(x)是奇函数,且f(1x)=f(1+x),f(1x)=f(1+x)=f(x1),f(0)=0,则f(x+2)=f(x),则f(x+4)=f(x+2)=f(x),即函数f(x)是周期为4的周期函数,f(1)=2,f(2)=f(0)=0,f(3)=f(12)=f(1)=f(1)=2,f(4)=f(0)=0,则f(1)+f(2
17、)+f(3)+f(4)=2+02+0=0,则f(1)+f(2)+f(3)+f(50)=12f(1)+f(2)+f(3)+f(4)+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C【点评】本题主要考查函数值的计算,根据函数奇偶性和对称性的关系求出函数的周期性是解决本题的关键12(5分)已知F1,F2是椭圆C:=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,PF1F2为等腰三角形,F1F2P=120,则C的离心率为()ABCD【考点】K4:椭圆的性质菁优网版权所有【专题】31:数形结合;44:数形结合法;5D:圆锥曲线的定义、性质与方程【分析】求得直线AP的
18、方程:根据题意求得P点坐标,代入直线方程,即可求得椭圆的离心率【解答】解:由题意可知:A(a,0),F1(c,0),F2(c,0),直线AP的方程为:y=(x+a),由F1F2P=120,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,题意的离心率e=故选:D【点评】本题考查椭圆的性质,直线方程的应用,考查转化思想,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13(5分)曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x【考点】6H:利用导数研究曲线上某点切线方程菁优网版权所有【专题】11:计算题;34:方程思想;49
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 甘肃省 全国 统一 高考 数学试卷 理科 新课 解析
限制150内