2023年八年级数学上册教案反思(3篇).docx
《2023年八年级数学上册教案反思(3篇).docx》由会员分享,可在线阅读,更多相关《2023年八年级数学上册教案反思(3篇).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2023年八年级数学上册教案反思(3篇)(全文完整) 2.使学生把握用平方差公式分解因式 二、重点难点 重点: 把握运用平方差公式分解因式。 难点: 将单项式化为平方形式,再用平方差公式分解因式; 学习方法:归纳、概括、总结 三、合作学习 创设问题情境,引入新课 在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有一样的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。 假如一个多项式的各项,不具备一样的因式,是否就不能分解因式了呢?固然不是,只要我们记住因式分解是多项式乘法的相反
2、过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法公式法。 1.请看乘法公式 (a+b)(a-b)=a2-b2 (1) 左边是整式乘法,右边是一个多项式,把这个等式反过来就是 a2-b2=(a+b)(a-b) (2) 左边是一个多项式,右边是整式的乘积。大家推断一下,其次个式子从左边到右边是否是因式分解? 利用平方差公式进展的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。 a2-b2=(a+b)(a-b) 2.公式讲解 如x2-16 =(x)2-42 =(x+4)(x-4). 9 m 2-4n2 =(3 m )2-(2n)2 =(3 m +2n
3、)(3 m -2n) 四、精讲精练 例1、把以下各式分解因式: (1)25-16x2; (2)9a2- b2. 例2、把以下各式分解因式: (1)9(m+n)2-(m-n)2; (2)2x3-8x. 补充例题:推断以下分解因式是否正确。 (1)(a+b)2-c2=a2+2ab+b2-c2. (2)a4-1=(a2)2-1=(a2+1)(a2-1). 五、课堂练习 教科书练习 六、作业 1、教科书习题 2、分解因式:x4-16 x3-4x 4x2-(y-z)2 3、若x2-y2=30,x-y=-5求x+y 八年级数学上册教案反思篇二 1、了解方差的定义和计算公式。 2、理解方差概念的产生和形成的
4、过程。 3、会用方差计算公式来比拟两组数据的波动大小。 1、重点:方差产生的必要性和应用方差公式解决实际问题。 2、难点:理解方差公式 3、难点的突破方法: 方差公式:s = ( - ) +( - ) +( - )比拟简单,学生理解和记忆这个公式都会有肯定困难,以致应用时经常消失计算的错误,为突破这一难点,我安排了几个环节,将难点化解。 (1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运发动、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择推断常常要去了解一组
5、数据的波动程度,仅仅知道平均数是不够的。 (2)波动性可以通过什么方式表现出来?第一环节中点明白为什么去了解数据的波动性,其次环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区分不大时,仅用画折线图方法去描述唯恐不会精确,这自然盼望可以消失一种数量来描述数据波动大小,这就引出方差产生的必要性。 (3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量
6、,教师也可以依据学生程度和课堂时间打算是否介绍平均差等可以反映数据波动大小的其他统计量。 1、教材p125的争论问题的意图: (1)。创设问题情境,引起学生的学习兴趣和奇怪心。 (2)。为引入方差概念和方差计算公式作铺垫。 (3)。介绍了一种比拟直观的衡量数据波动大小的方法画折线法。 (4)。客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。 2、教材p154例1的设计意图: (1)。例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是准时复习,稳固对方差公式的把握。 (2)。例1的解题步骤也为学生做了一个示范,学生以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 八年 级数 上册 教案 反思
限制150内