八年级上册第十二章至第十五章知识要点_小学教育-小学考试.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《八年级上册第十二章至第十五章知识要点_小学教育-小学考试.pdf》由会员分享,可在线阅读,更多相关《八年级上册第十二章至第十五章知识要点_小学教育-小学考试.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 第十二章 全等三角形 一、全等三角形 能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成
2、“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”1、全等三角
3、形的概念 能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。2、全等三角形的表示和性质 全等用符号“”表示,读作“全等于”。如ABC DEF,读作“三角形 ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。学习必备 欢迎下载 3、三角形全等的判定 三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)
4、(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有 HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)4、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折 180,这种变换叫做对称变换。(3)旋转变换:将图形
5、绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。第十二章 轴对称 一、轴对称图形 1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、轴对称图形和轴对称的区别与联系轴对称图形轴对称区别联系图形(1)轴对称图形是指()具 有特殊形状的图形,只对()图形而言;(2)对称轴()只有一条(1)轴对称是指()图形的位置关系,必须涉
6、及()图形;(2)只有()对称轴.如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.BCACBAABC一个一个不一定两个两个一条知识回顾:4.轴对称的性质 平移翻折旋转可以得到它的全等形全等三角形有哪些性质全等三角形的对应边相等对应角相等全等三角形的周长相等面积相等全等三角形的对应边上的对应中线角平分线高线分别相等全等三角形的判定边边边三边对应相等的两个三的两个三角形全等可简写成角角边两角和其中一角的对边对应相等的两个三角形全等可简写成斜边直角边斜边和一条直角边对应相等的两个直角三角形全等可简写成证
7、明两个三角形全等的基本思路二角的平分线性质角的平分线上的几个问题要正确区分对应边与对边对应角与对角的不同含义表示两个三角形全等时表示对应顶点的字母要写在对应的位置上有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等时刻注意图形中的隐含条件学习必备 欢迎下载 关于某直线对称的两个图形是全等形。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线 1.经过线段中点并且垂直于这条线段的直线,叫做这条线段
8、的垂直平分线,也叫中垂线。2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上 三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x,y)关于x轴对称的点的坐标为_.点(x,y)关于y轴对称的点的坐标为_.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 四、(等边三角形)知识点回顾 1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角
9、是 600 的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。五、(等腰三角形)知识点回顾 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论 1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论 2:等边三角形的各个角都相等,并且每个角都等于 60。(2)等腰三角形的其他性质:等腰直角三角形的两个底角相等且等于 45 等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。等腰三角形的三边关系:设腰长为 a
10、,底边长为 b,则2ba 平移翻折旋转可以得到它的全等形全等三角形有哪些性质全等三角形的对应边相等对应角相等全等三角形的周长相等面积相等全等三角形的对应边上的对应中线角平分线高线分别相等全等三角形的判定边边边三边对应相等的两个三的两个三角形全等可简写成角角边两角和其中一角的对边对应相等的两个三角形全等可简写成斜边直角边斜边和一条直角边对应相等的两个直角三角形全等可简写成证明两个三角形全等的基本思路二角的平分线性质角的平分线上的几个问题要正确区分对应边与对边对应角与对角的不同含义表示两个三角形全等时表示对应顶点的字母要写在对应的位置上有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不
11、一定全等时刻注意图形中的隐含条件学习必备 欢迎下载 等腰三角形的三角关系:设顶角为顶角为A,底角为B、C,则A=1802B,B=C=2180A 2、等腰三角形的判定 等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。推论 1:三个角都相等的三角形是等边三角形 推论 2:有一个角是 60的等腰三角形是等边三角形。推论 3:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。等腰三角形的性质与判定 等腰三角形性质 等腰三角形判定 中线 1、等腰三角形底边上的中线垂直底边,平
12、分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。1、两边上中线相等的三角形是等腰三角形;2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形 角平分线 1、等腰三角形顶角平分线垂直平分底边;2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。高线 1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。1、如果一个三角
13、形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。角 等边对等角 等角对等边 边 底的一半腰长周长的一半 两边相等的三角形是等腰三角形 六、三角形中的中位线 连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。平移翻折旋转可以得到它的全等形全等三角形有哪些性质全等三角形的对应边相等对应角相等全等三角形的周长相等面积相等全等三角形的
14、对应边上的对应中线角平分线高线分别相等全等三角形的判定边边边三边对应相等的两个三的两个三角形全等可简写成角角边两角和其中一角的对边对应相等的两个三角形全等可简写成斜边直角边斜边和一条直角边对应相等的两个直角三角形全等可简写成证明两个三角形全等的基本思路二角的平分线性质角的平分线上的几个问题要正确区分对应边与对边对应角与对角的不同含义表示两个三角形全等时表示对应顶点的字母要写在对应的位置上有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等时刻注意图形中的隐含条件学习必备 欢迎下载 数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论 1:三条中
15、位线组成一个三角形,其周长为原三角形周长的一半。结论 2:三条中位线将原三角形分割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论 4:三角形一条中线和与它相交的中位线互相平分。结论 5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。第十四章 整式乘除与因式分解 一回顾知识点 1、主要知识回顾:幂的运算性质:amanam n (m、n 为正整数)同底数幂相乘,底数不变,指数相加 nma amn (m、n 为正整数)幂的乘方,底数不变,指数相乘 nnnbaab (n 为正整数)积的乘方等于各因式乘方的积 nmaa am n (a0,m、n 都是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上册 第十二 第十五 知识 要点 小学教育 小学 考试
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内