2019海南考研数学三真题及答案.pdf
《2019海南考研数学三真题及答案.pdf》由会员分享,可在线阅读,更多相关《2019海南考研数学三真题及答案.pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20192019 海南考研数学三真题及答案海南考研数学三真题及答案一、填空题(本题共 6 小题,每小题 4 分,满分 24 分.把答案填在题中横线上)(1)设,0,0,0,1cos)(xxxxxf若若其导函数在 x=0 处连续,则的取值范围是_.(2)已知曲线bxaxy233与 x 轴相切,则2b可以通过 a 表示为2b_.(3)设 a0,xaxgxf其他若,10,0,)()(而 D 表示全平面,则DdxdyxygxfI)()(=_.(4)设 n 维向量0,),0,0,(aaaT;E 为 n 阶单位矩阵,矩阵TEA,TaEB1,其中 A 的逆矩阵为 B,则 a=_.(5)设随机变量 X 和 Y
2、 的相关系数为0.9,若4.0 XZ,则 Y 与 Z 的相关系数为_.(6)设总体 X 服从参数为 2 的指数分布,nXXX,21为来自总体 X 的简单随机样本,则当n时,niinXnY121依概率收敛于_.二、选择题(本题共 6 小题,每小题 4 分,满分 24 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设 f(x)为不恒等于零的奇函数,且)0(f 存在,则函数xxfxg)()(A)在 x=0 处左极限不存在.(B)有跳跃间断点 x=0.(C)在 x=0 处右极限不存在.(D)有可去间断点 x=0.(2)设可微函数 f(x,y)在点),(00y
3、x取得极小值,则下列结论正确的是(A),(0yxf在0yy 处的导数等于零.(B)),(0yxf在0yy 处的导数大于零.(C),(0yxf在0yy 处的导数小于零.(D),(0yxf在0yy 处的导数不存在.(3)设2nnnaap,2nnnaaq,,2,1n,则下列命题正确的是(A)若1nna条件收敛,则1nnp与1nnq都收敛.(B)若1nna绝对收敛,则1nnp与1nnq都收敛.(C)若1nna条件收敛,则1nnp与1nnq敛散性都不定.(D)若1nna绝对收敛,则1nnp与1nnq敛散性都不定.(4)设三阶矩阵abbbabbbaA,若 A 的伴随矩阵的秩为 1,则必有(A)a=b 或
4、a+2b=0.(B)a=b 或 a+2b0.(C)ab 且 a+2b=0.(D)ab 且 a+2b0.(5)设s,21均为 n 维向量,下列结论不正确的是(A)若对于任意一组不全为零的数skkk,21,都有02211sskkk,则s,21线性无关.(B)若s,21线性相 关,则对于任 意一组不全 为零的数skkk,21,都有.02211sskkk(C)s,21线性无关的充分必要条件是此向量组的秩为 s.(D)s,21线性无关的必要条件是其中任意两个向量线性无关.(6)将一枚硬币独立地掷两次,引进事件:1A=掷第一次出现正面,2A=掷第二次出现正面,3A=正、反面各出现一次,4A=正面出现两次,
5、则事件(A)321,AAA相互独立.(B)432,AAA相互独立.(C)321,AAA两两独立.(D)432,AAA两两独立.三、(本题满分 8 分)设:).1,21,)1(1sin11)(xxxxxf试补充定义 f(1)使得 f(x)在 1,21上连续.四、(本题满分 8 分)设 f(u,v)具有二阶连续偏导数,且满足12222vfuf,又)(21,),(22yxxyfyxg,求.2222ygxg五、(本题满分 8 分)计算二重积分.)sin(22)(22dxdyyxeIDyx其中积分区域 D=.),(22 yxyx六、(本题满分 9 分)求幂级数12)1(2)1(1nnnxnx的和函数 f
6、(x)及其极值.七、(本题满分 9 分)设 F(x)=f(x)g(x),其中函数 f(x),g(x)在),(内满足以下条件:)()(xgxf,)()(xfxg,且 f(0)=0,.2)()(xexgxf求 F(x)所满足的一阶微分方程;求出 F(x)的表达式.八、(本题满分 8 分)设函数 f(x)在0,3上连续,在(0,3)内可导,且 f(0)+f(1)+f(2)=3,f(3)=1.试证必存在)3,0(,使.0)(f九、(本题满分 13 分)已知齐次线性方程组,0)(,0)(,0)(,0)(332211332211332211332211nnnnnnnnxbaxaxaxaxaxbaxaxax
7、axaxbaxaxaxaxaxba其中.01niia试讨论naaa,21和 b 满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.十、(本题满分 13 分)设二次型)0(222),(31232221321bxbxxxaxAXXxxxfT中二次型的矩阵 A 的特征值之和为 1,特征值之积为-12.求 a,b 的值;利用正交变换将二次型 f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分 13 分)设随机变量 X 的概率密度为;,8,1,0,31)(32其他若 xxxfF(x)是 X 的分布函数.求随机变量 Y=F(X)的分布函
8、数.十二、(本题满分 13 分)设随机变量 X 与 Y 独立,其中 X 的概率分布为7.03.021X,而 Y 的概率密度为 f(y),求随机变量 U=X+Y 的概率密度 g(u).参考答案一、填空题(本题共 6 小题,每小题 4 分,满分 24 分.把答案填在题中横线上)(1)设,0,0,0,1cos)(xxxxxf若若其导函数在 x=0 处连续,则的取值范围是2.【分析】当x0 可直接按公式求导,当 x=0 时要求用定义求导.【详解】当1时,有,0,0,0,1sin1cos)(21xxxxxxxf若若显然当2时,有)0(0)(lim0fxfx,即其导函数在 x=0 处连续.(2)已知曲线b
9、xaxy233与 x 轴相切,则2b可以通过 a 表示为2b64a.【分析】曲线在切点的斜率为 0,即0 y,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b与 a 的关系.【详解】由题设,在切点处有03322axy,有.220ax又在此点 y 坐标为 0,于是有0300230bxax,故.44)3(6422202202aaaxaxb【评注】有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a0,xaxgxf其他若,10,0,)()(而D表 示 全 平 面,则DdxdyxygxfI)()(=2a.【分析】本题积分区域为全平面,但只有当10,10 xy
10、x时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】DdxdyxygxfI)()(=dxdyaxyx10,102=.)1(21021012adxxxadydxaxx【评注】若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设 n 维向量0,),0,0,(aaaT;E 为 n 阶单位矩阵,矩阵TEA,TaEB1,其中 A 的逆矩阵为 B,则 a=-1.【分析】这里T为 n 阶矩阵,而22aT为数,直接通过EAB 进行计算并注意利用乘法的结合律即可.【详解】由题设,有)1)(TTaEEAB=TTTTaaE11=T
11、TTTaaE)(11=TTTaaE21=EaaET)121(,于是有0121aa,即0122 aa,解得.1,21aa由于 A0,故 a=-1.(5)设随机变量 X 和 Y 的相关系数为 0.9,若4.0 XZ,则 Y 与 Z 的相关系数为0.9.【分析】利用相关系数的计算公式即可.【详解】因为)4.0()()4.0()4.0,cov(),cov(XEYEXYEXYZY=)(4.0)()()(4.0)(YEXEYEYEXYE=E(XY)E(X)E(Y)=cov(X,Y),且.DXDZ 于是有 cov(Y,Z)=DZDYZY),cov(=.9.0),cov(XYDYDXYX【评注】注意以下运算公
12、式:DXaXD)(,).,cov(),cov(YXaYX(6)设总体 X 服从参数为 2 的指数分布,nXXX,21为来自总体 X 的简单随机样本,则当n时,niinXnY121依概率收敛于21.【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量nXXX,21,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111nEXnXnniipnii【详解】这里22221,nXXX满足大数定律的条件,且22)(iiiEXDXEX=21)21(412,因此根据大数定律有niinXnY121依概率收敛于.21112niiEXn二、选择题(本题共 6 小题,每小题
13、4 分,满分 24 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设 f(x)为不恒等于零的奇函数,且)0(f 存在,则函数xxfxg)()(A)在 x=0 处左极限不存在.(B)有跳跃间断点 x=0.(C)在 x=0 处右极限不存在.(D)有可去间断点 x=0.D【分析】由题设,可推出 f(0)=0,再利用在点 x=0 处的导数定义进行讨论即可.【详解】显然 x=0 为 g(x)的间断点,且由 f(x)为不恒等于零的奇函数知,f(0)=0.于是有)0(0)0()(lim)(lim)(lim000fxfxfxxfxgxxx存在,故 x=0 为可去间断
14、点.【评注 1】本题也可用反例排除,例如 f(x)=x,则此时 g(x)=,0,0,0,1xxxx可排除(A),(B),(C)三项,故应选(D).【评注 2】若 f(x)在0 xx 处连续,则.)(,0)()(lim0000AxfxfAxxxfxx.(2)设可微函数 f(x,y)在点),(00yx取得极小值,则下列结论正确的是(A),(0yxf在0yy 处的导数等于零.(B)),(0yxf在0yy 处的导数大于零.(C),(0yxf在0yy 处的导数小于零.(D),(0yxf在0yy 处的导数不存在.A【分析】可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详 解】可 微 函 数 f(
15、x,y)在 点),(00yx取 得 极 小 值,根 据 取 极 值 的必 要 条 件 知0),(00yxfy,即),(0yxf在0yy 处的导数等于零,故应选(A).【评注 1】本题考查了偏导数的定义,),(0yxf在0yy 处的导数即),(00yxfy;而),(0yxf在0 xx 处的导数即).,(00yxfx【评注 2】本题也可用排除法分析,取22),(yxyxf,在(0,0)处可微且取得极小值,并且有2),0(yyf,可排除(B),(C),(D),故正确选项为(A).(3)设2nnnaap,2nnnaaq,,2,1n,则下列命题正确的是(A)若1nna条件收敛,则1nnp与1nnq都收敛
16、.(B)若1nna绝对收敛,则1nnp与1nnq都收敛.(C)若1nna条件收敛,则1nnp与1nnq敛散性都不定.(D)若1nna绝对收敛,则1nnp与1nnq敛散性都不定.B【分析】根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】若1nna绝对收敛,即1nna收敛,当然也有级数1nna收敛,再根据2nnnaap,2nnnaaq及收敛级数的运算性质知,1nnp与1nnq都收敛,故应选(B).(4)设三阶矩阵abbbabbbaA,若 A 的伴随矩阵的秩为 1,则必有(A)a=b 或 a+2b=0.(B)a=b 或 a+2b0.(C)ab 且 a+2b=0.(D)ab 且
17、 a+2b0.C【分析】A 的伴随矩阵的秩为 1,说明 A 的秩为 2,由此可确定 a,b 应满足的条件.【详解】根据 A 与其伴随矩阵 A*秩之间的关系知,秩(A)=2,故有0)(2(2babaabbbabbba,即有02 ba或 a=b.但当 a=b 时,显然秩(A)2,故必有 ab 且 a+2b=0.应选(C).【评注】n(n)2阶矩阵 A 与其伴随矩阵 A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(nArnArnArnAr(5)设s,21均为 n 维向量,下列结论不正确的是(A)若对于任意一组不全为零的数skkk,21,都有02211sskkk,则s,21线性无关.(B
18、)若s,21线性相 关,则对于任 意一组不全 为零的数skkk,21,都有.02211sskkk(C)s,21线性无关的充分必要条件是此向量组的秩为 s.(D)s,21线性无关的必要条件是其中任意两个向量线性无关.B【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详 解】(A):若 对 于 任 意 一 组 不 全 为 零 的 数skkk,21,都 有02211sskkk,则s,21必线性无关,因为若s,21线性相关,则存在一组不全为零的数skkk,21,使得02211sskkk,矛盾.可见(A)成立.(B):若s,21线性相关,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 海南 考研 数学 三真题 答案
限制150内