2019吉林考研数学二真题及答案.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2019吉林考研数学二真题及答案.pdf》由会员分享,可在线阅读,更多相关《2019吉林考研数学二真题及答案.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20192019 吉林考研数学二真题及答案吉林考研数学二真题及答案一、选择题选择题:1:18 8 小题小题,每小题每小题 4 4 分分,共共 3232 分分.下列每题给出的四个选项中下列每题给出的四个选项中,只有一个选项只有一个选项符合题目要求的,请将所选项前的字母填在符合题目要求的,请将所选项前的字母填在答题纸答题纸指定位置上指定位置上.1 1、当0 x 时,若tanxx与kx是 同阶无穷小量,则k()A、1.B、2.C、3.D、4.【答案】C.【解析】因为3tan3xxx,所以3k,选C.2 2、曲线3sin2cosyxxxx 的拐点是()A、,.B、0,2.C、,2.D、33,.【答案】
2、C.【解析】cossinyxxx,sinyxx ,令sin0yxx ,解得0 x 或x。当x时,0y;当x时,0y,所以,2是拐点。故选C.3 3、下列反常积分发散的是()A、0 xxe dx.B、20 xxedx.C、20tan1arxxdxx.D、201xdxx.【答案】D.【解析】A、00001xxxxxe dxxdexee dx ,收敛;B、222001122xxxedxedx,收敛;C、22200tan1arctan128arxxdxxx,收敛;D、2222000111(1)ln(1)1212xdxdxxxx,发散,故选D。4 4、已知微分方程的xyaybyce通解为12()xxyC
3、C x ee,则,a b c依次为()A、1,0,1.B、1,0,2.C、2,1,3.D、2,1,4.【答案】D D.【解析】由题设可知1r 是特征方程20rarb的二重根,即特征方程为2(1)0r,所以2,1ab。又知*xye是方程2xyyyce的特解,代入方程的4c。故选D。5 5、已知积分区域,2Dx yxy,221DIxy dxdy,222sinDIxy dxdy,2231 cosDIxydxdy,则()A、321III.B、213III.C、123III.D、231III.【答案答案】A.【解析解析】比较积分的大小,当积分区域一致时,比较被积函数的大小即可解决问题。由2xy,可得22
4、22xy【画图发现2xy包含在圆2222xy的内 部】,令22uxy,则02u,于 是 有sinuu,从 而2222sinDDxy dxdyxy dxdy。令()1 cossinf uuu,则()sincosf uuu,()04f。()f u在0,4内单调减少,在,42 单 调 增 加,又 因 为(0)()02ff,故 在0,2内()0f u,即1 cossinuu,从而2222sin(1 cos)DDxy dxdyxydxdy。综上,选A。6、设函数(),()f x g x的二阶导数在xa处连续,则2()()lim0()xaf xg xxa是两条曲线()yf x,()yg x在xa对应的点处
5、相切及曲率相等的()A、充分非必要条件.B、充分必要条件.C、必要非充分条件.D、既非充分也非必要条件.【答案】【答案】A.【解析】充分性【解析】充分性:利用洛必达法则,由2()()lim0()xaf xg xxa可得()()lim02()xafxg xxa及()()lim02xafxgx,进而推出()()f ag a,()()fag a,()()fag a。由此可知两曲线在xa处有相同切线,且由曲率公式3221()yKy可知曲线在xa处曲率也相等,充分性得证。必要性必要性:由曲线()yf x,()yg x在xa处相切,可得()()f ag a,()()fag a;由曲率相等332222()(
6、)1()1()fag afag a,可知()()fag a或()()faga。当()()faga 时,所求极限2()()()()()()limlimlim()()2()2xaxaxaf xg xfxg xfxgxfaxaxa,而()fa未必等于 0,因此必要性不一定成立。故选A。7、设A是 4 阶矩阵,*A为A的伴随矩阵,若线性方程组0Ax 的基础解系中只有 2 个向量,则*()r A()。A、0.B、1.C、2.D、3.【答案】A.【解析】因为方程组0Ax 的基础解系中只有 2 个向量,所以4()2r A,从而()24 1r A,则*()r A0,故选A。8、设A是 3 阶实对称矩阵,E是
7、3 阶单位矩阵,若22AAE,且4A,则二次型Tx Ax的规范型为()A、222123yyy.B、222123yyy.C、222123yyy.D、222123yyy.【答案】C.【解析】设是A的特征值,根据22AAE得22,解得1或2;又因为4A,所以A的特征值为 1,-2,-2,根据惯性定理,Tx Ax的规范型为222123yyy。故选C。二、填空题:二、填空题:9 91414 小题小题,每小题每小题 4 4 分分,共共 2424 分分.请将答案写在请将答案写在答题纸答题纸指定位置上指定位置上.9 9、20lim(2)xxxx.【答案】24e。【解析】0222limln1(21)00lim(
8、2)lim1(21)xxxxxxxxxxxxe0212 lim2(1 ln2)24xxxxeee.1010、曲线sin1 cosxttyt 在32t对应点处的切线在y轴上的截距为。【答案答案】322.【解析【解析】斜率32sin11 costdytdxt,切线方程为322yx ,截距为322。1111、设函数()f u可导,2()yzyfx,则2zzxyxy。【答案】【答案】2yyfx.【解析】【解析】3222222,zyyzyyyfffxxxyxxx,22zzyxyyfxyx1212、曲线lncos(0)6yxx的弧长为【答案答案】1ln32【解析解析】2211tansecdsy dxxdx
9、xdx66001secln(sectan)ln3.2sxdxxx1313、已知函数21sin()xtf xxdtt,则10()f x dx【答案答案】1(cos1 1)4【解析解析】设21sin()xtF xdtt,则1111122200000111()()()()()222f x dxxF x dxF x dxx F xx dF x211112222000011sin111()sincos(cos1 1)22244xx F x dxxdxxx dxxx .1414、已 知 矩 阵1100211132210034A,ijA表 示 元 素ija的 代 数 余 子 式,则1112AA【答案答案】4
10、.【解析解析】由行列式展开定理得11121100100011111 12111211112101043221312103403400340034AAA 三三、解答题解答题:15152323 小题小题,共共 9494 分分.请将解答写在请将解答写在答题纸答题纸指定位置上指定位置上.解答应写出文字说明解答应写出文字说明、证明过程或演算步骤证明过程或演算步骤.1515、(本题满分本题满分 1010 分分)已知函数2,0()1,0 xxxxf xxex,求()fx,并求函数()f x的极值【解 析解 析】当0 x 时,22 ln()xxxf xxe,2()2(ln1)xfxxx;当0 x 时,()(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 吉林 考研 数学 二真题 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内