2018广西考研数学三真题及答案.pdf
《2018广西考研数学三真题及答案.pdf》由会员分享,可在线阅读,更多相关《2018广西考研数学三真题及答案.pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20182018 广西考研数学三真题及答案广西考研数学三真题及答案一、选择题1.下列函数中,在0 x 处不可导的是().sinA f xxx.sinB f xxx.C f xcos x.cosD f xx答案:D解析:方法一:000sin0limlimlimsin0,xxxxxxf xfxxxxA可导 000sin0limlimlimsin0,xxxxxxfxfxxxxB可导 20001cos102limlimlim0,xxxxxf xfxxCx可导 0001cos102limlimlimxxxxxffxxxDx不存在,不可导应选 D.方法二:因为,(1)0fcosx fx 0001cos10
2、2limlimlimxxxxxf xfxxx不存在 f x在0 x 处不可导,选 D对 :Af xxsinx在0 x 处可导对 32:Bf xxxx在0 x 处可导对():xxCfcos在0 x 处可导.2.设函数 f x在0,1上二阶可导,且 100,f x dx 则 10,02Afxf当时 10,02Bfxf当时 10,02Cfxf当时 10,02Dfxf当时答案 D【解析】将函数 f x在12处展开可得 2221110001111,222221111111,22222222ff xffxxff x dxffxxdxffxdx故当()0fx 时,1011.0.22fx dxff从而有选 D
3、。3.设2222222211,1cos1xxxMdx Ndx Kx dxxe,则A.MNKB.MKNC.KMND.KNM答案:C解析:2222222221211,11xxMdxdxdxxx221xxNdxe,因为1xex所以11xxe221cos,1cos1.Kx dxx即11 1cosxxxe 所以由定积分的比较性质KMN,应选 C.4.设某产品的成本函数 C Q可导,其中Q为产量,若产量为0Q时平均成本最小,则()A00C QB00C QC QC.000C QQ C QD.000Q C QC Q答案D【解 析】平 均 成 本 2,C QdC QCQ QC QC QQdQQ,由 于 C Q在
4、0QQ处取最小值,可知000.Q C Q故选(D).5.下列矩阵中,与矩阵110011001相似的为111.011001A101.011001B111.010001C101.010001D答案:A解析:令110010001P则1110010001P1110111110010011010001001001120110110011010011001001001P AP选项为A6.设,A B为n阶矩阵,记r X为矩阵X的秩,XY表示分块矩阵,则.Ar AABr A.Br ABAr A .,C r ABmax r Ar B.TTD r ABr A B答案:A解析:易知选项C错对于选项B举反例:取1 1
5、001 112AB1则001 100,331 133BAA BA7.设随机变量X的概率密度 f x满足11fxfx,且 200.6f x dx,则0_P X(A)0.2;(B)0.3;(C)0.4;(D)0.6解由11fxfx知,概率密度 f x关于1x对称,故02P XP X,且00221P XPXP X,由于 20020.6PXf x dx,所以200.4P X,即00.2P X,故选项 A 正确8.设12,nXXX为取自于总体2,XN 的简单随机样本,令niiXnX11,2111()1niiSXXn,2211()niiSXXn,则下列选项正确的是_(A)n Xt nS;(B)1n Xt
6、nS;(C)*n Xt nS;(D)*1n Xt nS解由于0,1XNn,)1()()1(221222nXXSnnii,且Xn与22(1)nS相互独立,由t分布的定义,得(1)n XXtnSSn,故选项 B 正确二、填空题9.曲线22lnyxx在其拐点处的切线方程为_。答案43yx【解析】函数 f x的定义域为232240,2,2,yxyyxxx。令=0y,解得x=1,而 10,y故点(1,1)为曲线唯一的拐点。曲线在该点处切线的斜率 14,y故切线方程为43yx。10.2arcsin 1_.xxee222222222222arcsin 11,1=arcsin 1arcsin 1111arcs
7、in 1tansin 111arcsin 11xxxxxxxeeeCtt dttttdttttttdtttCteeeC答案【解析】令t=e 则原式11.差分方程25xxyy的通解_.【答案】125xxyc2+1+2+1+1+2+1+2+1+1+111111=22=5,2525,2,-2=5,=-52xxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyycyccccyc 【解析】由于,故原差分方程可化为即。设一阶常系数线性差分方程对应的其次方程为其通解为。设原差方程的特解代入原方程得即。所以原差分方程的通解为5,c为任意常数。12.函数 x满足 20,xxxxxxxx 且
8、 02,则 1_.答案 12.e【解析】2,=2xxxxxxxxx 由可知可微 且。这是一个可分离变量微分方程,求得其通解为 2;xxce再由 02,可得2c。故 22,12xxee。13.设A为3阶 矩 阵,123,为 线 性 无 关 的 向 量 组,若112322332322,AAA,,可得123123200,111121A 。由于123,线性无关,故200111121A=B,从而有相同的特征值。因2200111223,121EB故A的实特征值为 2。14.设随机事件,A B C相互独立,且1()()()2P AP BP C,则()_P AC AB解由条件概率以及事件相互独立性的定义,得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 广西 考研 数学 三真题 答案
限制150内