2018年江西上饶中考数学真题及答案.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2018年江西上饶中考数学真题及答案.pdf》由会员分享,可在线阅读,更多相关《2018年江西上饶中考数学真题及答案.pdf(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2018 年江西上饶中考数学真题及答案一、选择题(本大共一、选择题(本大共 6 6 分,每小题分,每小题 3 3 分,共分,共 1818 分。每小题只有一个正确选项)分。每小题只有一个正确选项)1(分)2 的绝对值是()A2B2CD【考点】15:绝对值【分析】根据绝对值的定义,可直接得出2 的绝对值【解答】解:|2|=2故选:B【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质2(分)计算(a)2的结果为()AbBbCabD【考点】6A:分式的乘除法【专题】11:计算题;513:分式【分析】先计算乘方,再计算乘法即可得【解答】解;原式=a2=b,故选:A【点评】本题主要考查分式的乘除法,
2、解题的关键是掌握分式乘除运算法则3(分)如图所示的几何体的左视图为()ABCD【考点】U2:简单组合体的三视图【专题】55F:投影与视图【分析】根据从左边看得到的图形是左视图,可得答案【解答】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线4(分)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A最喜欢篮球的人数最多B最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C全班共有 50 名学生D最喜欢田径的人数占总人数的
3、10%【考点】V8:频数(率)分布直方图【专题】1:常规题型;542:统计的应用【分析】根据频数分布直方图中的数据逐一判断可得【解答】解:A、最喜欢足球的人数最多,此选项错误;B、最喜欢羽毛球的人数是最喜欢田径人数的两倍,此选项错误;C、全班学生总人数为 12+20+8+4+6=50 名,此选项正确;!D、最喜欢田径的人数占总人数的100%=8%,此选项错误故选:C【点评】本题主要考查频数分布直方图,解题的关键是根据频数分布直方图得出各分组的具体数据5(分)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形 ABCD 从当前
4、位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A3 个 B4 个 C5 个 D无数个【考点】P8:利用轴对称设计图案;Q2:平移的性质【专题】1:常规题型【分析】直接利用平移的性质结合轴对称图形的性质得出答案、【解答】解:如图所示:正方形 ABCD 可以向上、下、向右以及沿 AC 所在直线,沿 BD 所在直线平移,所组成的两个正方形组成轴对称图形故选:C【点评】此题主要考查了利用轴对称设计图案以及平移的性质,正确掌握轴对称图形的性质是解题关键6(分)在平面直角坐标系中,分别过点 A(m,0),B(m+2,0)作 x 轴的垂线 l1
5、和 l2,探究直线 l1,直线 l2与双曲线 y=的关系,下列结论错误的是()A两直线中总有一条与双曲线相交B当 m=1 时,两直线与双曲线的交点到原点的距离相等C当2m0 时,两直线与双曲线的交点在 y 轴两侧D当两直线与双曲线都有交点时,这两交点的最短距离是 2【考点】G8:反比例函数与一次函数的交点问题【专题】534:反比例函数及其应用【分析】A、由 m、m+2 不同时为零,可得出:两直线中总有一条与双曲线相交;B、找出当 m=1 时两直线与双曲线的交点坐标,利用两点间的距离公式可得出:当 m=1 时,两直线与双曲线的交点到原点的距离相等;C、当2m0 时,0m+22,可得出:当2m0
6、时,两直线与双曲线的交点在 y 轴两侧;D、由 y 与 x 之间一一对应结合两交点横坐标之差为 2,可得出:当两直线与双曲线都有交点时,这两交点的距离大于 2此题得解【解答】解:A、m、m+2 不同时为零,两直线中总有一条与双曲线相交;B、当 m=1 时,点 A 的坐标为(1,0),点 B 的坐标为(3,0),#当 x=1 时,y=3,直线 l1与双曲线的交点坐标为(1,3);当 x=3 时,y=1,直线 l2与双曲线的交点坐标为(3,1)=,当 m=1 时,两直线与双曲线的交点到原点的距离相等;C、当2m0 时,0m+22,当2m0 时,两直线与双曲线的交点在 y 轴两侧;D、m+2m=2,
7、且 y 与 x 之间一一对应,当两直线与双曲线都有交点时,这两交点的距离大于 2故选:D【点评】本题考查了反比例函数与一次函数的交点问题,逐一分析四个选项的正误是解题的关键二、填空题(本大题共二、填空题(本大题共 6 6 小题,每小题小题,每小题 3 3 分,共分,共 1818 分)分)7(分)若分式有意义,则 x 的取值范围为x1【考点】62:分式有意义的条件【分析】分式有意义,分母不等于零【解答】解:依题意得 x10,即 x1 时,分式有意义故答案是:x1【点评】本题考查了分式有意义的条件从以下三个方面透彻理解分式的概念:¥(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值
8、为零分子为零且分母不为零8(分)2018 年 5 月 13 口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6 万吨,将数 60000 用科学记数法表示应为6104【考点】1I:科学记数法表示较大的数【专题】511:实数【分析】科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同 当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数【解答】解:60000=6104,故答案为:6104【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n的形式,其
9、中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值9(分)中国的九章算术是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两问牛羊各直金几何”译文:今有牛 5 头,羊 2头,共值金 10 两;牛 2 头,羊 5 头,共值金 8 两问牛、羊每头各值金多少设牛、羊每头各值金 x 两、y 两,依题意,可列出方程组为【考点】99:由实际问题抽象出二元一次方程组【专题】34:方程思想;521:一次方程(组)及应用【分析】设每头牛值金 x 两,每头羊值金 y 两,根据“牛 5 头,羊 2 头,共值金 10 两;牛2 头,羊 5 头,共值金 8
10、 两”,即可得出关于 x、y 的二元一次方程组,此题得解【解答】解:设每头牛值金 x 两,每头羊值金 y 两,根据题意得:故答案为:【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键10(分)如图,在矩形 ABCD 中,AD=3,将矩形 ABCD 绕点 A 逆时针旋转,得到矩形 AEFG,点 B 的对应点 E 落在 CD 上,且 DE=FF,则 AB 的长为3【考点】LB:矩形的性质;R2:旋转的性质【专题】558:平移、旋转与对称【分析】由旋转的性质得到 AD=EF,AB=AE,再由 DE=EF,等量代换得到 AD=DE,即三角形 AED为等腰
11、直角三角形,利用勾股定理求出 AE 的长,即为 AB 的长【解答】解:由旋转得:AD=EF,AB=AE,D=90,DE=EF,AD=DE,即ADE 为等腰直角三角形,!根据勾股定理得:AE=3,则 AB=AE=3,故答案为:3【点评】此题考查了旋转的性质,矩形的性质,熟练掌握旋转的性质是解本题的关键11(分)一元二次方程 x24x+2=0 的两根为 x1,x2则 x124x1+2x1x2的值为2【考点】AB:根与系数的关系【专题】523:一元二次方程及应用【分析】根据根与系数的关系及一元二次方程的解可得出 x124x1=2、x1x2=2,将其代入x124x1+2x1x2中即可求出结论【解答】解
12、:一元二次方程 x24x+2=0 的两根为 x1、x2,x124x1=2,x1x2=2,x124x1+2x1x2=2+22=2故答案为:2【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于、两根之积等于 是解题的关键12(分)在正方形 ABCD 中,AB=6,连接 AC,BD,P 是正方形边上或对角线上一点,若 PD=2AP,则 AP 的长为2 或 2或【考点】KQ:勾股定理;LE:正方形的性质【专题】1:常规题型【分析】根据正方形的性质得出 ACBD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,ABC=90,根据勾股定理求出 AC、BD、求出 OA、O
13、B、OC、OD,画出符合的三种情况,根据勾股定理求出即可【解答】解:四边形 ABCD 是正方形,AB=6,ACBD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,ABC=DAB=90,在 RtABC 中,由勾股定理得:AC=6,OA=OB=OC=OD=3,有三种情况:点 P 在 AD 上时,AD=6,PD=2AP,AP=2;点 P 在 AC 上时,设 AP=x,则 DP=2x,在 RtDPO 中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3x)2,解得:x=(负数舍去),即 AP=;点 P 在 AB 上时,设 AP=y,则 DP=2y,在 RtAPD 中,
14、由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即 AP=2;故答案为:2 或 2或【点评】本题考查了正方形的性质和勾股定理,能求出符合的所有情况是解此题的关键,用了分类讨论思想三三、(本大题共(本大题共 5 5 小题,每小题小题,每小题 6 6 分,共分,共 3030 分)分)13(分)(1)计算:(a+1)(a1)(a2)2;(2)解不等式:x1+3【考点】4C:完全平方公式;4F:平方差公式;C6:解一元一次不等式【专题】11:计算题;512:整式【分析】(1)原式利用平方差公式,以及完全平方公式计算即可求出值;(2)不等式去分母,去括号,移项合并
15、,把 x 系数化为 1,即可求出解集【解答】解:(1)原式=a21a2+4a4=4a5;(2)去分母得:2x2x2+6,|移项合并得:x6【点评】此题考查了平方差公式,完全平方公式,以及解一元一次不等式,熟练掌握运算法则及公式是解本题的关键14(分)如图,在ABC 中,AB=8,BC=4,CA=6,CDAB,BD 是ABC 的平分线,BD 交 AC于点 E,求 AE 的长【考点】KJ:等腰三角形的判定与性质;S9:相似三角形的判定与性质【专题】1:常规题型【分析】根据角平分线定义和平行线的性质求出D=CBD,求出 BC=CD=4,证AEBCED,得出比例式,求出 AE=2CE,即可得出答案【解
16、答】解:BD 为ABC 的平分线,ABD=CBD,ABCD,D=ABD,D=CBD,BC=CD,BC=4,CD=4,ABCD,ABECDE,=,=,AE=2CE,AC=6=AE+CE,AE=4【点评】本题考查了相似三角形的性质和判定和等腰三角形的判定、平行线的性质等知识点,能求出 AE=2CE 和ABECDE 是解此题的关键15(分)如图,在四边形 ABCD 中,ABCD,AB=2CD,E 为 AB 的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹)(1)在图 1 中,画出ABD 的 BD 边上的中线;(2)在图 2 中,若 BA=BD,画出ABD 的 AD 边上的高【考点】JA:平行
17、线的性质;K2:三角形的角平分线、中线和高;N3:作图复杂作图|【专题】13:作图题【分析】(1)连接 EC,利用平行四边形的判定和性质解答即可;(2)连接 EC,ED,FA,利用三角形重心的性质解答即可【解答】解:(1)如图 1 所示,AF 即为所求:(2)如图 2 所示,BH 即为所求【点评】本题考查作图复杂作图,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型16(分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动 班主任梁老师决定从 4 名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定 2 名女生去参加抽签规则:将 4 名女班干部姓名分别写在
18、4 张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的 3张卡片中随机抽取第二张,记下姓名(1)该班男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率;【考点】X1:随机事件;X6:列表法与树状图法【专题】1:常规题型;543:概率及其应用【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可【解答】解:(1)
19、该班男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取卡片“小悦被抽中”的概率为,故答案为:不可能、随机、;(2)记小悦、小惠、小艳和小倩这四位女同学分别为 A、B、C、D,列表如下:)ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D|(A,D)(B,D)(C,D)由表可知,共有 12 种等可能结果,其中小惠被抽中的有 6 种结果,所以小惠被抽中的概率为=【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验
20、还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比17(分)如图,反比例函数 y=(k0)的图象与正比例函数 y=2x 的图象相交于 A(1,a),B 两点,点 C 在第四象限,CAy 轴,ABC=90(1)求 k 的值及点 B 的坐标;(2)求 tanC 的值【考点】G8:反比例函数与一次函数的交点问题【专题】11:计算题【分析】(1)先利用正比例函数解析式确定 A(1,2),再把 A 点坐标代入 y=中求出 k 得到反比例函数解析式为 y=,然后解方程组得 B 点坐标;(2)作 BDAC 于 D,如图,利用等角的余角相等得到C=ABD,然后在在 RtABD 中利用正切的定义求解即
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 江西 上饶 中考 数学 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内