2023年度高考数学科目考试常用资料知识点.docx
《2023年度高考数学科目考试常用资料知识点.docx》由会员分享,可在线阅读,更多相关《2023年度高考数学科目考试常用资料知识点.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2023年度高考数学科目考试常用资料知识点 一、集合与函数 1.进展集合的交、并、补运算时,不要忘了全集和空集的特别状况,不要遗忘了借助数轴和文氏图进展求解。 2.在应用条件时,易A忽视是空集的状况 3.你会用补集的思想解决有关问题吗? 4.简洁命题与复合命题有什么区分?四种命题之间的相互关系是什么?如何推断充分与必要条件? 5.你知道“否命题”与“命题的否认形式”的区分。 6.求解与函数有关的问题易忽视定义域优先的原则。 7.推断函数奇偶性时,易忽视检验函数定义域是否关于原点对称。 8.求一个函数的解析式和一个函数的反函数时,易忽视标注该函数的定义域。 9.原函数在区间-a,a上单调递增,
2、则肯定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不肯定单调。例如:。 10.你娴熟地把握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法 11. 求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等式表示。 12.求函数的值域必需先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题? 比拟函数值的大小; 解抽象函数不等式; 求参数的范围(恒成立问题).这几种根本应用你把握了吗? 14.解对数函数问题时,你留意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需争论 15.三个二次(哪三个二次
3、?)的关系及应用把握了吗?如何利用二次函数求最值? 16.用换元法解题时易忽视换元前后的等价性,易忽视参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否留意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 二、不等式 1.利用均值不等式求最值时,你是否留意到:“一正;二定;三等”. 2.肯定值不等式的解法及其几何意义是什么? 3.解分式不等式应留意什么问题?用“根轴法”解整式(分式)不等式的留意事项是什么? 4.解含参数不等式的通法是“定义域为前提,函数的单调性为根底,分类争论是关键”,留意解完之后要写上
4、:“综上,原不等式的解集是”. 5. 在求不等式的解集、定义域及值域时,其结果肯定要用集合或区间表示;不能用不等式表示。 6. 两个不等式相乘时,必需留意同向同正时才能相乘,即同向同正可乘;同时要留意“同号可倒”即ab0,a 三、数列 1.解决一些等比数列的前项和问题,你留意到要对公比及两种状况进展争论了吗? 2.在“已知,求”的问题中,你在利用公式时留意到了吗?(时,应有)需要验证,有些题目通项是分段函数。 3.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与全部项的和的不同吗?什么样的无穷等比数列的全部项的和必定存在? 4.数列单调性问题能否等同于对应
5、函数的单调性问题?(数列是特别函数,但其定义域中的值不是连续的。) 5.应用数学归纳法一要留意步骤齐全,二要留意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。 四、三角函数 1.正角、负角、零角、象限角的概念你清晰吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边一样的角和相等的角的区分吗? 2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗? 3. 在解三角问题时,你留意到正切函数、余切函数的定义域了吗?你留意到正弦函数、余弦函数的有界性了吗? 4. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化消失特
6、别角。 异角化同角,异名化同名,高次化低次) 5. 反正弦、反余弦、反正切函数的取值范围分别是 6.你还记得某些特别角的三角函数值吗? 7.把握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简洁的三角不等式的解集吗?(要留意数形结合与书写标准,可别忘了),你是否清晰函数的图象可以由函数经过怎样的变换得到吗? 五、平面对量 1.数0有区分,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。 2.数量积与两个实数乘积的区分: 在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。 已知实数,且,则a=c,但在向量
7、的数量积中没有。 在实数中有,但是在向量的数量积中,这是由于左边是与共线的向量,而右边是与共线的向量。 3.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。 六、解析几何 1.在用点斜式、斜截式求直线的方程时,你是否留意到不存在的状况? 2.用到角公式时,易将直线l1、l2的斜率k1、k2的挨次弄颠倒。 3.直线的倾斜角、到的角、与的夹角的取值范围依次是。 4. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你留意到了吗? 5. 对不重合的两条直线 (建议在解题时,争论后利用斜率和截距) 6. 直线在两坐标轴上的截距相等,直线方程
8、可以理解为,但不要遗忘当时,直线在两坐标轴上的截距都是0,亦为截距相等。 7.解决线性规划问题的根本步骤是什么?请你留意解题格式和完整的文字表达。 设出变量,写出目标函数 写出线性约束条件 画出可行域 作出目标函数对应的系列平行线,找到并求出最优解 8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你把握了吗? 9.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题? 10.利用圆锥曲线其次定义解题时,你是否留意到定义中的定比前后项的挨次?如何利用其次定义推出圆锥曲线的焦半径公式?如何应用焦半径公式? 11. 通径是抛物线的全部焦点弦中最短的弦。(想一
9、想在双曲线中的结论?) 12. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要留意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进展). 13.解析几何问题的求解中,平面几何学问利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系? 七、立体几何 1.你把握了空间图形在平面上的直观画法吗?(斜二测画法)。 2.线面平行和面面平行的定义、判定和性质定理你把握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么? 3.三垂线定理及其逆
10、定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见 4.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。 5.求两条异面直线所成的角、直线与平面所成的角和二面角时,假如所求的角为90,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。 6.异面直线所成角利用“平移法”求解时,肯定要留意平移后所得角等于所求角(或其补角),特殊是题目告知异面直线所成角,应用时肯定要从题
11、意动身,是用锐角还是其补角,还是两种状况都有可能。 7.你知道公式:和中每一字母的意思吗?能够娴熟地应用它们解题吗? 8. 两条异面直线所成的角的范围:090 p= 直线与平面所成的角的范围:0o90 高考数学易错学问点 易错点1 遗忘空集致误 错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,B高三经典纠错笔记:数学A,B,三种状况,在解题中假如思维不够缜密就有可能无视了 B这种状况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分留意当参数在某个范围内取值时所给的集合可能是空集这种状况。空集是一个特别的集合,由于思维定式的缘由,考生往
12、往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 无视集合元素的三性致误 错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特殊是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再详细解决问题。 易错点3 四种命题的构造不明致误 错因分析:假如原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若A则B”,逆否命题是“若B则A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,肯定要明确四种命题的构造以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年度 高考 数学 科目 考试 常用 资料 知识点
限制150内