2023年数学重要知识点八年级上册.docx
《2023年数学重要知识点八年级上册.docx》由会员分享,可在线阅读,更多相关《2023年数学重要知识点八年级上册.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2023数学重要知识点八年级上册 数学重要学问点八年级上册汇合 第十二章全等三角形 一、学问框架: 二、学问概念: 1.根本定义: 全等形:能够完全重合的两个图形叫做全等形. 全等三角形:能够完全重合的两个三角形叫做全等三角形. 对应顶点:全等三角形中相互重合的顶点叫做对应顶点. 对应边:全等三角形中相互重合的边叫做对应边. 对应角:全等三角形中相互重合的角叫做对应角. 2.根本性质: 三角形的稳定性:三角形三边的长度确定了,这个三角形的外形、大小就全确定,这共性质叫做三角形的稳定性. 全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理: 边边边(SSS):三边
2、对应相等的两个三角形全等. 边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. 角边角(ASA):两角和它们的夹边对应相等的两个三角形全等. 角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等. 斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. 4.角平分线: 画法: 性质定理:角平分线上的点到角的两边的距离相等. 性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的根本方法: 明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系) 依据题意,画出图形,并用数字符号
3、表示已知和求证. 经过分析,找出由已知推出求证的途径,写出证明过程. 第十三章轴对称 一、学问框架: 二、学问概念: 1.根本概念: 轴对称图形:假如一个图形沿一条直线折叠,直线两旁的局部能够相互重合,这个图形就叫做轴对称图形. 两个图形成轴对称:把一个图形沿某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 等边三角形:三条边都相等的三角形叫做等边
4、三角形. 2.根本性质: 对称的性质: 不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线. 对称的图形都全等. 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等. 与一条线段两个端点距离相等的点在这条线段的垂直平分线上. 关于坐标轴对称的点的坐标性质 点P(x,y)关于x轴对称的点的坐标为P(x,y). 点P(x,y)关于y轴对称的点的坐标为P(x,y). 等腰三角形的性质: 等腰三角形两腰相等. 等腰三角形两底角相等(等边对等角). 等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.等腰三角形是轴对称图形,对称轴是三
5、线合一(1条). 等边三角形的性质: 等边三角形三边都相等. 等边三角形三个内角都相等,都等于60 等边三角形每条边上都存在三线合一. 等边三角形是轴对称图形,对称轴是三线合一(3条). 3.根本判定: 等腰三角形的判定: 有两条边相等的三角形是等腰三角形. 假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边). 等边三角形的判定: 三条边都相等的三角形是等边三角形. 三个角都相等的三角形是等边三角形. 有一个角是60的等腰三角形是等边三角形. 4.根本方法: 做已知直线的垂线: 做已知线段的垂直平分线: 作对称轴:连接两个对应点,作所连线段的垂直平分线. 作已知图形关于某直线
6、的对称图形: 在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短. 八年级上册数学学问点总结 因式分解 1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;留意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式确实定:系数的公约数?一样因式的最低次幂. 留意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式: (1)平方差公式: a2-b2=(a+ b)(a- b); (2)完全平方公式: a2+2a
7、b+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5.因式分解的留意事项: (1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特殊留意公式中的字母都具有整体性; (3)因式分解的最终结果要求分解到每一个因式都不能分解为止; (4)因式分解的最终结果要求每一个因式的首项符号为正; (5)因式分解的最终结果要求加以整理; (6)因式分解的最终结果要求一样因式写成乘方的形式. 6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把一样的式子看作整体;(7)敏捷分组;(8
8、)提取分数系数;(9)绽开局部括号或全部括号;(10)拆项或补项. 7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”. 分式 1.分式:一般地,用A、B表示两个整式,AB就可以表示为 的形式,假如B中含有字母,式子 叫做分式. 2.有理式:整式与分式统称有理式;即 . 3.对于分式的两个重要推断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;留意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的根本性质与应用: (1)若分式的分子与分母都乘以(或除
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 数学 重要 知识点 年级 上册
限制150内