2023年江苏省无锡市中考数学真题(解析版).docx
《2023年江苏省无锡市中考数学真题(解析版).docx》由会员分享,可在线阅读,更多相关《2023年江苏省无锡市中考数学真题(解析版).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年无锡市初中毕业升学考试数学试题一、选择题(本大题共10小题,每小题3分,共30分在每小题所给出的四个选项中,只有一项是正确的)1. 实数9的算术平方根是( )A. 3B. C. D. 【答案】A【解析】【分析】根据算术平方根的定义即可求出结果【详解】解:,故选:A【点睛】本题考查了平方根和算术平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根2. 函数y中自变量x的取值范围是( )A. x2B. x2C. x2D. x2【答案】C【解析】【分析】令分母不等于0求解即可【详解】由题意得x-20,x2故选C【点睛】本题考查了函数自变量的取值范围,函数有意
2、义时字母的取值范围一般从几个方面考虑:当函数解析式是整式时,字母可取全体实数;当函数解析式是分式时,考虑分式的分母不能为0;当函数解析式是二次根式时,被开方数为非负数3. 下列4组数中,不是二元一次方程的解是( )A. B. C. D. 【答案】D【解析】【分析】将选项中的的值分别代入方程的左边,进而即可求解【详解】解:A、当时,则是二元一次方程的解,不合题意; B、当时,则是二元一次方程的解 ,不合题意;C、 当时,则是二元一次方程的解,不合题意;D、当时,则不是二元一次方程的解,符合题意;故选:D【点睛】本题考查了二元一次方程的解的定义,熟练掌握二元一次方程的解的定义是解题的关键4. 下列
3、运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据同底数幂的乘法,同底数幂的除法,积的乘方,合并同类项,逐项分析判断即可求解【详解】解:A. ,故该选项不正确,不符合题意; B. 与不能合并,故该选项不正确,不符合题意; C. ,故该选项不正确,不符合题意; D. ,故该选项正确,符合题意;故选:D【点睛】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方,合并同类项,熟练掌握同底数幂的乘法,同底数幂的除法,积的乘方,合并同类项的运算法则是解题的关键5. 将函数的图像向下平移2个单位长度,所得图像对应的函数表达式是( )A. B. C. D. 【答案】A【解析】【分析】根
4、据题目条件函数的图像向下平移2个单位长度,则的值减少2,代入方程中即可【详解】解:函数的图像向下平移2个单位长度,故答案为:A【点睛】本题主要考查函数平移,根据题目信息判断是沿轴移动还是沿轴移动是解题的关键6. 2020年一2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是( )A. B. C. D. 【答案】A【解析】【分析】根据2020年的人均可支配收入和2022年的人均可支配收入,列出一元二次方程即可【详解】解:由题意得:故选:A【点睛】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的
5、关键7. 如图,中,将逆时针旋转得到,交于F当时,点D恰好落在上,此时等于( ) A. B. C. D. 【答案】B【解析】【分析】根据旋转可得,再结合旋转角即可求解【详解】解:由旋转性质可得:,故选:B【点睛】本题考查了几何旋转问题,掌握旋转的性质是关键8. 下列命题:各边相等的多边形是正多边形;正多边形是中心对称图形;正六边形的外接圆半径与边长相等;正n边形共有n条对称轴其中真命题的个数是( )A. 4B. 3C. 2D. 1【答案】C【解析】【分析】根据正多边形的性质以及正多边形与圆的关系逐一进行判断即可【详解】解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形
6、,如菱形,故是假命题;正三角形和正五边形就不是中心对称图形,故为假命题;正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故为真命题;根据轴对称图形的定义和正多边形的特点,可知正n边形共有n条对称轴,故为真命题.故选:C【点睛】本题考查的是正多边形的概念以及正多边形与圆的关系,属于基础题型9. 如图,在四边形中,若线段在边上运动,且,则的最小值是( ) A. B. C. D. 10【答案】B【解析】【分析】过点C作,过点B作,需使最小,显然要使得和越小越好,则点F在线段的之间,设,则,求得关于x的二次函数,利用二次函数的性质即可求解.【详解】解:过点C作, ,过点B作,四
7、边形是矩形,需使最小,显然要使得和越小越好,显然点F在线段的之间,设,则,当时取得最小值为故选:B【点睛】本题考查了二次函数应用,矩形的判定和性质,解直角三角形,利用二次函数的性质是解题的关键10. 如图中,为中点,若点为直线下方一点,且与相似,则下列结论:若,与相交于,则点不一定是的重心;若,则的最大值为;若,则的长为;若,则当时,取得最大值其中正确的为( ) A. B. C. D. 【答案】A【解析】【分析】有3种情况,分别画出图形,得出的重心,即可求解;当,时,取得最大值,进而根据已知数据,结合勾股定理,求得的长,即可求解;如图5,若,根据相似三角形的性质求得,进而求得,即可求解;如图6
8、,根据相似三角形的性质得出,在中,根据二次函数的性质,即可求取得最大值时,【详解】有3种情况,如图,和都是中线,点是重心;如图,四边形是平行四边形,是中点,点是重心;如图,点不是中点,所以点不是重心;正确 当,如图时最大,错误; 如图5,若,错误;如图6,即,在中,当时,最大为5,正确故选:C【点睛】本题考查了三角形重心的定义,勾股定理,相似三角形的性质,二次函数的性质,分类讨论,画出图形是解题的关键二、填空题(本大题共8小题,每小题3分,共24分)11. 分解因式:_【答案】#【解析】【分析】利用完全平方公式进行因式分解即可【详解】解:;故答案为:【点睛】本题考查因式分解熟练掌握完全平方公式
9、法因式分解,是解题的关键12. 废旧电池含有少量重金属,随意丢弃会污染环境有资料表明,一粒纽扣大的废旧电池,大约会污染水数据用科学记数法可表示_【答案】【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数【详解】解:故答案为:【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键13. 方程的解是:_【答案】【解析】【分析】首先方程两边乘以最简公分母去分母,然后去括号,移项,合并同类项,把的系数化为1,最
10、后一定要检验【详解】解:去分母得:,去括号得:,移项得:,合并同类项得:,检验:把代入最简公分母中:,原分式方程的解为: ,故答案为:【点睛】此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误14. 若直三棱柱的上下底面为正三角形,侧面展开图是边长为的正方形,则该直三棱柱的表面积为_【答案】#【解析】【分析】根据题意得出正三角形边长为,进而根据表面积等于两个底面积加上侧面正方形的面积即可求解【详解】解:侧面展开图是边长为的正方形,底面周长,底面为正三角形,正三角形的边长为作,是等边三角形,在直角中,; 该直三棱柱的表面积为,故答案为:【点睛】本题考查了三棱柱
11、的侧面展开图的面积,等边三角形的性质,正方形的性质,熟练掌握以上知识是解题的关键15. 请写出一个函数的表达式,使得它的图象经过点:_【答案】(答案不唯一)【解析】【分析】根据一次函数的定义,可以先给出k值等于1,再找出符合点的b的值即可,答案不唯一【详解】解:设,则,它的图象经过点,代入得:,解得:,一次函数解析式为,故答案为:(答案不唯一)【点睛】本题主要考查对一次函数的常数k、b的理解和待定系数法的运用,是开放型题目16. 九章算术中提出了如下问题:今有户不知高、广,竿不知长短,横之不出四尺,从之不出二尺,邪之适出,问户高、广、邪各几何?这段话的意思是:今有门不知其高宽:有竿,不知其长短
12、,横放,竿比门宽长出4尺:竖放,竿比门高长出2尺:斜放,竿与门对角线恰好相等问门高、宽和对角线的长各是多少?则该问题中的门高是_尺【答案】8【解析】【分析】设门高尺,则竿长为尺,门的对角线长为尺,门宽为尺,根据勾股定理即可求解【详解】解:设门高尺,依题意,竿长为尺,门的对角线长为尺,门宽为尺,解得:或(舍去),故答案为:【点睛】本题考查了勾股定理,根据题意建立方程是解题的关键17. 已知曲线分别是函数的图像,边长为的正的顶点在轴正半轴上,顶点、在轴上(在的左侧),现将绕原点顺时针旋转,当点在曲线上时,点恰好在曲线上,则的值为_【答案】6【解析】【分析】画出变换后的图像即可(画即可),当点在轴上
13、,点、在轴上时,根据为等边三角形且,可得,过点、分别作轴垂线构造相似,则,根据相似三角形的性质得出,进而根据反比例函数的几何意义,即可求解【详解】当点在轴上,点、在轴上时,连接,为等边三角形且,则, 如图所示,过点分别作轴的垂线,交轴分别于点,【点睛】本题考查了反比例函数的性质,的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键18. 二次函数的图像与轴交于点、,与轴交于点,过点的直线将分成两部分,这两部分是三角形或梯形,且面积相等,则的值为_【答案】或或【解析】【分析】先求得,直线解析式为,直线的解析式为,1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年江苏省无锡市中考数学真题 解析版 2023 江苏省 无锡市 中考 数学 解析
限制150内