人工智能核心技术产业白皮书ok.pdf
《人工智能核心技术产业白皮书ok.pdf》由会员分享,可在线阅读,更多相关《人工智能核心技术产业白皮书ok.pdf(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人工智能人工智能核心技术产业核心技术产业白皮书白皮书20212021 年年 4 4 月月目目 录录一、人工智能核心技术产业发展总体态势.1(一)深度学习技术进入升级优化阶段,产业开始步入高速发展阶段.1(二)寒冬并非低谷,产业生态已现加速构建态势.1(三)人工智能以空前广度与深度推动社会发展,加速产业结构升级进程.4二、人工智能技术创新重点.5(一)深度学习试图从多角度融合创新,开启认知时代仍在探索.5(二)任务场景愈加复杂,倒逼学习方式多元化发展.8(三)深度神经网络理论体系尝试颠覆性创新,多分支融合趋势渐显.9(四)预训练模型加速演进,试图实现语言处理领域的通用智能.10(五)模型小型化成
2、为提升模型运行效率的关键.11(六)深度学习应用加速推动智能计算革命.12三、人工智能产业发展趋势.12(一)从谋求单点技术的“极致”,向场景化综合生态发展.12(二)以科技巨头引领的产业垂直整合速度不断加快.14(三)开发框架格局逐步清晰,已从百花齐放向几家分争转变.15(四)以研发和技术服务为核心,产业开始打造平台化发展模式.18(五)智能计算产业形态初显,呈现蓬勃发展态势.20(六)全球数据鸿沟仍在加大,开放共享机制与数据服务能力加速构建.22(七)以开源开发框架为核心的生态体系雏形渐显,多种小生态同步形成.24四、我国人工智能发展重点与机遇.26(一)十三五期间我国总体发展情况.26(
3、二)十四五期间我国发展方向与机遇.29图图 目目 录录图 1 全球融资轮次数量分布.2图 2 人工智能规模经济 S 曲线.4图 3 人工智能技术发展阶段.8图 4 垂直一体化布局.15图 5 开源框架发展历程.16图 6 技术体系按创新程度和突破难度分级.30表表 目目 录录表 1主要开源框架活跃情况.16人工智能核心技术产业白皮书1一、一、人工智能核心技术产业发展总体态势人工智能核心技术产业发展总体态势(一)(一)深度学习技术进入升级优化阶段,产业开始步入深度学习技术进入升级优化阶段,产业开始步入高速发展阶段高速发展阶段人工智能技术体系与产业体系错位发展,深度学习理论突破速度逐步放缓,产业开
4、始步入高速发展阶段。目前,本轮深度学习理论突破速度开始放缓,技术红利的持续释放驱动图像分类、机器翻译等多类感知任务准确率大幅增长,步入升级优化期。人工智能本轮爆发初期主要在探讨算法理论的可能性,聚焦探索强化学习、迁移学习等新的学习方式以及 AlexNet、VGG、GoogLeNet 等结构多样的算法模型;算法理论的不确定性和技术的不成熟耗费产业界大量精力和时间,阻碍人工智能大规模应用进程。目前,产业开始步入高速发展时期,2020年技术标志性生产工具 TensorFlow 框架下载量爆发式增长,仅一个月1超 1000 万次,占发布四年半下载总量(1 个亿+)的十分之一;同时,技术成本快速下降,同
5、等算法水平所需计算量每八个月降低一倍,成本降低百倍,业内涌现出研发平台、技术服务平台等多样化的平台形态,工程技术正在引领产业快速发展。(二)(二)寒冬并非低谷,产业生态已现加速构建态势寒冬并非低谷,产业生态已现加速构建态势资本寒冬已经出现。其中,预期过高是主要原因。人工智能企业增速明显放缓,2019、2020 年全球每年新增人工智能企业数量已不足 100 家2 2,且投融资的轮次后移趋势不断扩大。2020 年 B 轮及以上融资笔数占总笔数的 62.3%,较上一年增长 40%以上。同时,曾获大笔融资的知名创新企业由于预期过高、虚假宣传等原因退出产业舞台。曾对标英特尔的芯片企业 Wave Comp
6、uting,是人工智能计算领1根据 2020 年 4 月 TensorFlow 官方发布数据显示。2数据来源:中国信息通信研究院。人工智能核心技术产业白皮书2域最受关注的独角兽之一,2020 年 4 月由于数据流处理器性能不达预期而宣告破产;智能会计工具 ScaleFactor 宣称利用人工智能技术自动化生成财务报表,但实际却部分采用人工外包方式处理,在融资1 亿美元后于 2020 年 3 月宣告倒闭。此外,资本早期对人工智能产业回报周期过于乐观是资本寒冬的另一原因。移动互联网在偏向工程属性的前提下,资本预期取得成效的时间为二到四年;与之相较,人工智能与传统行业核心业务深度融合,需更高的技术准
7、确率和更深刻的行业理解力。因此,人工智能产业孕育时间更长,资本市场的期望和现实出现较大偏差。来源:中国信息通信研究院图 1 全球融资轮次数量分布3从技术基础理论突破到工程化落地应用,既有技术红利已为产业发展奠定坚实基础。当前,虽然资本市场的泡沫逐步破裂,但优质企业的估值仍在持续增长,独角兽企业不断出现,产业呈现良性发展态势。深度学习技术局限性似乎导致人工智能产业发展将遇天花板,然而事实并非如此。虽然,可解释性、理解推理等局限性确已显现,但这是下一时期理论技术突破重点,不能因此否定图像识别、语音合成、机器翻译等感知类任务上的应用技术成就和产业应用前景。目前,基3投融资这里主要统计的是风险投资,不
8、包含战略轮(国内)和其他风险投资。人工智能核心技术产业白皮书3于深度学习理论的优化技术层出不穷,RegNet4、GPT-3 等模型不断提升视觉处理、阅读理解等基础智能任务水平,虚拟助手、多语种翻译等智能应用已开始进入规模化应用阶段,大量的行业应用场景加速深度融合,技术能力和优化速度可见 5 到 8 年的红利。产业各环节逐步明晰,规模化应用突破已现曙光。人工智能技术在消费互联网领域发展速度较快,智能推荐、视觉识别、语音助手等智能技术能力已深度应用至电商、社交、资讯等消费互联网平台以及手机、无人机等消费终端中,并加速与核心业务进行整合。当前,智能技术正在向更多的行业领域渗透,融合渗透仍需时日孕育。
9、相较于消费互联网领域,传统行业的知识获取和积累需要较长时间,应用场景碎片化的特点导致低成本、易用、泛化能力较强的能力平台构建需较长周期。总体来看,人工智能产业正处于 S 曲线中快速发展的临界位置(如下图),现阶段智能技术落地成本较为昂贵,导致智能产品绝对量增加时,其单位成本并未明显下降。目前,人工智能头部企业加速布局,不断完善技术生产工具(开源开发框架、数据处理、验证分析、部署监测等完备研发工具链),加速建立全栈智能计算技术体系(形成基础计算理论、芯片、软硬协同、系统协同全栈技术支撑能力),探索孕育基础和垂直行业技术平台;产业规模化发展的进程正在不断加速,规模经济有望形成。42020 年 4
10、月,脸书人工智能实验室何恺明团队推出新型网络设计范式 RegNet,性能优于 2019 年 5月谷歌提出图像分类模型(SOTA)EfficientNet,且在 GPU 上的速度提升 5 倍。人工智能核心技术产业白皮书4来源:中国信息通信研究院图 2人工智能规模经济 S 曲线(三)(三)人工智能以空前人工智能以空前广度与深度推动社会发展,加速广度与深度推动社会发展,加速产业结构升级进程产业结构升级进程人工智能已全面覆盖社会运行的基本要素,内生化提升全局运转效率。从社会运行角度,人工智能加速影响日常生活、科学研究、商业创新和国家安全等社会运行的基本要素。一是人工智能与科学研究的结合已开始改变基于传
11、统学术经验的科学研究方式,实现从大量已知论文、实验数据中挖掘未知理论,加速提升化学、材料、物理、药物研发等领域文献获取速度与实验发现效率,成为下一时期科技竞争的重要动力。二是人工智能成为商业创新与竞争的下一个主战场,传统行业巨头加速布局智能供应链、质量检测、商业决策等细分应用,有望显著提升生产流程、质量控制、商业营运等环节效率,改善工作条件;三是娱乐、消费电子、医疗等生活领域的智能应用不断贴近、细化场景需求,室内安防无人机、人性化虚拟助手等智能消费产品不断涌现,问诊机器人及智能影像逐步推广使用,医疗资源紧缺、分布不均等一些行业痛点开始缓解;四是疫情加速教育培训向在线智能化发展,试题 OCR 识
12、别、辅助批改等应用已从试点向规模化发展,推动人工智能核心技术产业白皮书5教学管理向精准管理转变,助力个性化学习体系的建立;五是全球领先国家已充分意识到人工智能技术与国防安全融合的重要程度,投入针对性资金推动预测维护、自动驾驶、情报分析、智能飞控等国防智能应用的发展。人工智能渗透率的提升有望显著加快全产业链结构的优化速度,牵引产业向高附加值的产品与服务转变。一方面,人工智能作为众多技术产品创新核心,是下一时期最为关键的高附加值产业。据预测,到 2030 年约 70%的行业企业将使用人工智能技术,预计为全球增加13 万亿美元的附加值5。另一方面,人工智能加速提升传统行业高附加值产品的比重,进一步优
13、化产业结构。人工智能技术与核心业务、专家经验深度融合,行业主营产品和运行方式的智能化程度正在不断提升,衍生新产品与新服务。麻省理工科技评论全球 50 家聪明企业(TR50)榜单中已显现传统行业企业的身影,如布局医药研发赋能平台的传统药物研发厂商药明康德,利用智能技术提升物流收派效率的顺丰科技等。二、二、人工智能技术创新重点人工智能技术创新重点(一)(一)深度学习试图从多角度融合创新,开启认知时代仍深度学习试图从多角度融合创新,开启认知时代仍在探索在探索深度学习仍然是人工智能技术发展的主导路线。当前,基于大量标注数据进行训练是深度学习技术实际应用的主要路线,从 1400 余万幅图片的ImageN
14、et数据集至2020年脸书和卡内基梅隆大学构建的超过 130 万种化合物分子间作用数据集 Open Catalyst,模型训练所需标注数据普遍达十万以上。然而,这种路线在取得良好成效的同时,面临着严重依赖标注数据的问题,带来在更多细分场景中应用落地的5数据来源:麦肯锡。人工智能核心技术产业白皮书6局限性。业内不断拓展深度学习解决问题的边界,推动人工智能进入感知增强时代。人工智能纯粹使用有监督学习方式训练深度学习模型的时代基本结束,受限于对大量标注数据依赖与理解能力缺乏,这种路径难以解决更多应用问题。当前,感知增强时代拉开序幕,这一时期的新算法聚焦提升数据的质量和规模,通过迁移其他领域训练成果、
15、自主生成或增强数据、依托知识图谱常识关系、利用多源数据等方式侧面弥补深度学习的局限性。深度强化学习、多模态学习等多元化的学习方式受到产业热捧,深度学习技术与知识工程、传统机器学习等分支的结合成为学界探索的热点新方向。深度学习加速探索与多元学习方式、多种技术分支的结合,少量数据训练、弱化人为干预以及多模态学习成为下一时期的发展关键。一是减少数据量依赖的少样本学习。少样本学习通过复用其他领域知识结构,使用少量数据对新领域进行训练,已进入初步应用阶段,如英伟达提出基于少样本学习的视频转化(Few-shot vid2vid)框架,仅借助少量目标示例图像即可合成未出现过的目标或场景视频。二是弱化人为干预
16、的自监督学习、强化学习。业内主流的有监督学习方式数据标注成本高昂,以机器翻译任务为例,市场人工翻译每单词平均价格约 7.5 美分,假设单个句子平均长度为 30 个单词,1000 万个句子人工翻译标注的成本约为 2200 万美元;若需支持上百种语言的互译,人工标注训练集的成本将达上千亿美元。这种高昂的数据成本促使学产两界加速对深度强化学习、自监督学习等范式的探索。图灵奖获得者杨立昆(Yann LeCun)加速自监督学习的研究进程,通过从未标记的数据集中学习监督信息,提升数据无标注下的学习能力;DeepMind、OpenAI 等机构不断演进深度强化学习算法,试图显著提人工智能核心技术产业白皮书7升
17、智能体的自主决策和多智协同能力。三是提高应用场景复杂度的多模态学习。应用场景正从单一视觉、语音的感知向多模态理解侧重,复杂度不断提升,从多模态信息源中学习模态间关系成为焦点,如菜肴制作视频与菜谱文本步骤对齐、唇动视觉描述与语音信号融合预测单词等。深度学习技术正在不断挑战更为复杂的任务,扩展能够解决问题的边界。直面推理理解问题的算法路径尚无定论,距离认知时代到来仍需数年。从理论体系角度来看,深度学习的领军专家开始探索深度学习理论体系的新形态,反向传播、经典神经网络模型等已有基础理论受到质疑。目前,杰弗里辛顿(Geoffrey Hinton)提出替代深度神经网络(DNN)架构的胶囊网络,试图解决小
18、样本问题。然而,胶囊网络虽连续三年推陈出新,但研究进程并非叠加式的演进,而是完全不同路径的替代。从学习方式角度来看,近一年来,强化学习实现通用智能的技术路径不再是业内共识,不依赖大量人工标注数据的自监督学习成为学习方式的新焦点,并在 2020 年 ICML、ICLR 等全球人工智能学术会议上高频出现,已成为众多专家所关注的关键路径。然而,无论是深度学习体系的颠覆式创新,还是多种学习方式的不断尝试,具备理解能力的算法模型目前未有显现迹象,真正的认知时代到来仍未可知。人工智能核心技术产业白皮书8来源:中国信息通信研究院图 3人工智能技术发展阶段(二)(二)任务场景愈加复杂,倒逼学习方式多元化发展任
19、务场景愈加复杂,倒逼学习方式多元化发展有监督学习建立在严苛条件之上,已不能完全满足模型学习需求,面对更为复杂的任务场景,业内加速探索强化学习、自监督学习等多元学习方式,试图缩小与通用智能的距离。深度强化学习不断演进,加速提升自主决策能力。深度强化学习加速拓展任务边界,突破性解决多人棋牌、即时战略游戏等多智能体非完全信息博弈任务。目前,OpenAI、谷歌、微软等企业相继攻克即时战略、德州扑克、麻将等复杂游戏,并加速向无人机群体飞行等更为实际的应用场景拓展。另一方面,深度强化学习不断提升处理复杂任务的能力,逐步拓展至芯片设计、音乐编曲等对知识技能要求更高的专业领域,如 2020 年谷歌研究人员利用
20、深度强化学习优化设计芯片布局,达到 PPA(功率、性能、面积)的最佳平衡,显著缩短设计时间;清华大学提出用于在线伴奏生成的深度强化学习算法,能够根据输入音乐实时生成伴奏。自监督学习成为最为活跃的学习方式。谷歌、脸书等多家企业先后发布使用自监督学习的算法模型,通过挖掘无标注数据的监督信人工智能核心技术产业白皮书9息,显著减少人为干预,在自然语言理解(NLP)领域取得显著成效,如谷歌 BERT、脸书 RoBERTa、OpenAI GPT-3 等。目前,学产两界正在加速自监督学习在计算机视觉(CV)领域的突破创新,已在精细图像处理方面初步取得进展,如华盛顿大学利用自监督学习方式实现图像背景的前后景分
21、离,精度达像素级别,可实现头发丝的精确分离。然而,尽管在自然语言理解、视觉处理等方面取得初步进展,现阶段自监督学习本质上仍依赖规范化、标签化的数据,主要借助预训练模型构造并学习数据特征,而非基于对数据内容和任务对象的深层次认知;真正理解数据内容的自监督学习尚未出现。(三)(三)深度神经网络理论体系尝试颠深度神经网络理论体系尝试颠覆性创新,多分支覆性创新,多分支融合趋势渐融合趋势渐显显深度学习局限性日益凸显,理论体系探索革新。当前,以杰弗里辛顿(Geoffrey Hinton)为代表的业内巨头持续推动理论体系的创新,其中,胶囊网络作为革新热点,试图解决数据依赖与不可解释问题;然而,历史上胶囊网络
22、的三个版本更新大相径庭,尚未形成稳定的新形态架构,仍处于探索阶段。此外,以胶囊网络为核心的应用也在不断探索,2020 年 Hinton 团队提出一种用于机器学习安全领域的网络检测机制,显著提升攻击检出率;中佛罗里达大学学者提出胶囊路由方法,可通过输入句子查询视频中符合条件的人物及特定动作,但上述成果仍停留在研究阶段。深度神经网络与其他技术分支加速融合发展。人工智能头部企业、高校等开始摸索深度神经网络与知识图谱、传统机器学习等分支的融合创新。一方面,知识图谱试图在不颠覆深度学习理论的基础之下,弥补小样本训练与理解推理能力不足的技术天花板。目前,面向垂直领域的专业知识图谱加速发展,已在金融、医疗、
23、司法多个行业人工智能核心技术产业白皮书10初步应用,显著提升垂直行业应用中知识自动关联、自动获取的智能化水平。如金融消费领域,蚂蚁金融知识图谱平台已经广泛应用在蚂蚁内部以及合作伙伴的微贷、保险智能理赔和智能理财等业务领域中;药物研发领域,亚马逊开发药物重定位知识图谱(DRKG)预测药物与疾病靶点结合的可能性,缩短药物研发周期并降低成本,已用于新冠病毒药物研发。另一方面,深度学习与传统机器学习融合已显现新的算法形态;贝叶斯深度学习成为热点方向之一,有效利用先验知识解决过拟合、小样本数据等问题,模型性能超越传统深度学习方法,如 DeepMind 提出贝叶斯 RNN 模型,图注释生成任务表现显著优于
24、传统 RNN 模型;纽约大学和三星研究人员提出基于贝叶斯思想的深度学习不确定性表示方法 SWAG,大幅提高模型泛化能力,在异常点检测、校准等计算机视觉任务上表现良好。(四)(四)预训练模型预训练模型加速演进,试图实现语言处理领域的加速演进,试图实现语言处理领域的通用智能通用智能预训练模型参数已至万亿级,训练成本之高几乎成为业内头部玩家的专属技术路径。2020 年,OpenAI 发布 GPT-3 模型,模型参数多达 1750 亿个,高达 1200 万美元的训练费用为预训练模型的构建构筑壁垒,中小型人工智能企业难以望其项背。2021 年,谷歌发布 SwitchTransformer 模型,再次将模
25、型参数推至 1.6 万亿新高。此外,微软宣布与 OpenAI 达成合作协议,获得 GPT-3 语言模型源码的独家授权,升级巨型模型的寡头格局形势,预示着未来超大规模预训练模型或将掌握在少数头部企业手中。预训练模型已进入可直接用于多种自然语言处理任务的“通用”智能阶段。预训练模型再次升级,头部人工智能企业先后发布通用预训练模型,可直接面向多种自然语言处理任务使用,不再需要针对不人工智能核心技术产业白皮书11同任务进行微调。目前,谷歌 T5、OpenAI GPT-3 等通用预训练模型进一步提升文本理解能力,在包含阅读理解、问答等任务的基准测试中接近人类水平。另一方面,通用预训练模型加速步入产业应用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 核心技术 产业 白皮书 ok
限制150内