2017年陕西省铜川中考数学真题及答案.pdf
《2017年陕西省铜川中考数学真题及答案.pdf》由会员分享,可在线阅读,更多相关《2017年陕西省铜川中考数学真题及答案.pdf(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20172017 年陕西省铜川中考数学真题及答案年陕西省铜川中考数学真题及答案一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1(3 分)计算:()21=()ABCD02(3 分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()ABCD3(3 分)若一个正比例函数的图象经过 A(3,6),B(m,4)两点,则 m 的值为()A2B8C2D84(3 分)如图,直线 ab,RtABC 的直角顶点 B 落在直线 a 上,若1=25,则2 的大小为()A55 B75 C65 D855(3 分)化简:,结果正确的是()A1BCDx2+y26(3 分)如图,将两个大小、
2、形状完全相同的ABC 和ABC拼在一起,其中点 A与点 A 重合,点 C落在边 AB 上,连接 BC若ACB=ACB=90,AC=BC=3,则 BC的长为()A3B6C3D7(3 分)如图,已知直线 l1:y=2x+4 与直线 l2:y=kx+b(k0)在第一象限交于点 M 若直线 l2 与 x 轴的交点为 A(2,0),则 k 的取值范围是()A2k2B2k0C0k4D0k28(3 分)如图,在矩形 ABCD 中,AB=2,BC=3若点 E 是边 CD 的中点,连接 AE,过点 B作 BFAE 交 AE 于点 F,则 BF 的长为()ABCD9(3 分)如图,ABC 是O 的内接三角形,C=
3、30,O 的半径为 5,若点 P 是O 上的一点,在ABP 中,PB=AB,则 PA 的长为()A5BC5D510(3 分)已知抛物线 y=x22mx4(m0)的顶点 M 关于坐标原点 O 的对称点为 M,若点 M在这条抛物线上,则点 M 的坐标为()A(1,5)B(3,13)C(2,8)D(4,20)二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)11(3 分)在实数5,0,中,最大的一个数是12(3 分)请从以下两个小题中任选一个作答,若多选,则按第一题计分A如图,在ABC 中,BD 和 CE 是ABC 的两条角平分线若A=52,则1+2 的度数为B.tan3815(结果精确
4、到 0.01)13(3 分)已知 A,B 两点分别在反比例函数 y=(m0)和 y=(m)的图象上,若点 A 与点 B 关于 x 轴对称,则 m 的值为14(3 分)如图,在四边形 ABCD 中,AB=AD,BAD=BCD=90,连接 AC若 AC=6,则四边形 ABCD 的面积为三、解答题(本大题共 11 小题,共 78 分)15(5 分)计算:()+|2|()116(5 分)解方程:=117(5 分)如图,在钝角ABC 中,过钝角顶点 B 作 BDBC 交 AC 于点 D请用尺规作图法在 BC 边上求作一点 P,使得点 P 到 AC 的距离等于 BP 的长(保留作图痕迹,不写作法)18(5
5、 分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间 x(分钟)进行了调查现把调查结果分成 A、B、C、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有 1200 名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于 20 分钟(早锻炼:指学生在早晨 7:007:40 之间的锻炼)19(7 分)如图
6、,在正方形 ABCD 中,E、F 分别为边 AD 和 CD 上的点,且 AE=CF,连接 AF、CE 交于点 G求证:AG=CG20(7 分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳 小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离测量方法如下:如图,首先,小军站在“聚贤亭”的 A 处,用侧倾器测得“乡思柳”顶端 M 点的仰角为 23,此时测得小军的眼睛距地面的高度 AB 为 1.7 米,然后,小军在 A 处蹲下,用侧倾器测得“乡思柳”顶端 M 点的仰角为 24,
7、这时测得小军的眼睛距地面的高度 AC 为 1米请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离 AN 的长(结果精确到 1 米)(参考数据:sin230.3907,cos230.9205,tan230.4245,sin240.4067,cos240.9135,tan240.4452)21(7 分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的 3个温室大棚进行修整改造,然后,1 个大棚种植香瓜,另外 2 个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包 5
8、个大棚,以后就用 8 个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种项目产量(斤/每棚)销售价(元/每斤)成本(元/每棚)香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为 x 个,明年上半年 8 个大棚中所产的瓜全部售完后,获得的利润为 y 元根据以上提供的信息,请你解答下列问题:(1)求出 y 与 x 之间的函数关系式;(2)求出李师傅种植的 8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于 10万元22(7 分)端午节
9、“赛龙舟,吃粽子”是中华民族的传统习俗节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为 A),豆沙粽子(记为 B),肉粽子(记为 C),这些粽子除了馅不同,其余均相同粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率23(8 分
10、)如图,已知O 的半径为 5,PA 是O 的一条切线,切点为 A,连接 PO 并延长,交O 于点 B,过点 A 作 ACPB 交O 于点 C、交 PB 于点 D,连接 BC,当P=30时,(1)求弦 AC 的长;(2)求证:BCPA24(10 分)在同一直角坐标系中,抛物线 C1:y=ax22x3 与抛物线 C2:y=x2+mx+n 关于 y 轴对称,C2 与 x 轴交于 A、B 两点,其中点 A 在点 B 的左侧(1)求抛物线 C1,C2 的函数表达式;(2)求 A、B 两点的坐标;(3)在抛物线 C1 上是否存在一点 P,在抛物线 C2 上是否存在一点 Q,使得以 AB 为边,且以 A、B
11、、P、Q 四点为顶点的四边形是平行四边形?若存在,求出 P、Q 两点的坐标;若不存在,请说明理由25(12 分)问题提出(1)如图,ABC 是等边三角形,AB=12,若点 O 是ABC 的内心,则 OA 的长为;问题探究(2)如图,在矩形 ABCD 中,AB=12,AD=18,如果点 P 是 AD 边上一点,且 AP=3,那么 BC边上是否存在一点 Q,使得线段 PQ 将矩形 ABCD 的面积平分?若存在,求出 PQ 的长;若不存在,请说明理由问题解决(3)某城市街角有一草坪,草坪是由ABM 草地和弦 AB 与其所对的劣弧围成的草地组成,如图所示管理员王师傅在 M 处的水管上安装了一喷灌龙头,
12、以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于AMB(即每次喷灌时喷灌龙头由 MA 转到MB,然后再转回,这样往复喷灌)同时,再合理设计好喷灌龙头喷水的射程就可以了如图,已测出 AB=24m,MB=10m,AMB 的面积为 96m2;过弦 AB 的中点 D 作 DEAB 交于点 E,又测得 DE=8m请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到 0.01 米)参考答案一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1
13、(3 分)(2017陕西)计算:()21=()ABCD0【分析】原式先计算乘方运算,再计算加减运算即可得到结果【解答】解:原式=1=,故选 C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键2(3 分)(2017陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()ABCD【分析】根据从正面看得到的图形是主视图,可得答案【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图3(3 分)(2017陕西)若一个正比例函数的图象经过 A(3,6),B(m,4)两点,则m 的值为()
14、A2B8C2D8【分析】运用待定系数法求得正比例函数解析式,把点 B 的坐标代入所得的函数解析式,即可求出 m 的值【解答】解:设正比例函数解析式为:y=kx,将点 A(3,6)代入可得:3k=6,解得:k=2,函数解析式为:y=2x,将 B(m,4)代入可得:2m=4,解得 m=2,故选:A【点评】本题考查了一次函数图象上点的坐标特征 解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题4(3 分)(2017陕西)如图,直线 ab,RtABC 的直角顶点 B 落在直线 a 上,若1=25,则2 的大小为()A55 B75 C65 D85【分析】由余角的定义求出
15、3 的度数,再根据平行线的性质求出2 的度数,即可得出结论【解答】解:1=25,3=901=9025=65ab,2=3=65故选:C【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等5(3 分)(2017陕西)化简:,结果正确的是()A1BCDx2+y2【分析】原式通分并利用同分母分式的减法法则计算即可得到结果【解答】解:原式=故选 B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键6(3 分)(2017陕西)如图,将两个大小、形状完全相同的ABC 和ABC拼在一起,其中点 A与点 A 重合,点 C落在边 AB 上,连接 BC 若ACB=ACB=90,AC=BC
16、=3,则 BC 的长为()A3B6C3D【分析】根据勾股定理求出 AB,根据等腰直角三角形的性质得到CAB=90,根据勾股定理计算【解答】解:ACB=ACB=90,AC=BC=3,AB=3,CAB=45,ABC 和ABC大小、形状完全相同,CAB=CAB=45,AB=AB=3,CAB=90,BC=3,故选:A【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方7(3 分)(2017陕西)如图,已知直线 l1:y=2x+4 与直线 l2:y=kx+b(k0)在第一象限交于点 M若直线 l2 与 x 轴的交点为 A(2,0),
17、则 k 的取值范围是()A2k2B2k0C0k4D0k2【分析】首先根据直线 l2 与 x 轴的交点为 A(2,0),求出 k、b 的关系;然后求出直线l1、直线 l2 的交点坐标,根据直线 l1、直线 l2 的交点横坐标、纵坐标都大于 0,求出 k的取值范围即可【解答】解:直线 l2 与 x 轴的交点为 A(2,0),2k+b=0,解得直线 l1:y=2x+4 与直线 l2:y=kx+b(k0)的交点在第一象限,解得 0k2故选:D【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握8(3 分)(2017陕西)如图,在矩形 ABCD 中,AB=2,BC=3若点 E
18、 是边 CD 的中点,连接AE,过点 B 作 BFAE 交 AE 于点 F,则 BF 的长为()ABCD【分析】根据 SABE=S 矩形 ABCD=3=AEBF,先求出 AE,再求出 BF 即可【解答】解:如图,连接 BE四边形 ABCD 是矩形,AB=CD=2,BC=AD=3,D=90,在 RtADE 中,AE=,SABE=S 矩形 ABCD=3=AEBF,BF=故选 B【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型9(3 分)(2017陕西)如图,ABC 是O 的内接三角形,C=30,O 的
19、半径为 5,若点 P 是O 上的一点,在ABP 中,PB=AB,则 PA 的长为()A5BC5D5【分析】连接 OA、OB、OP,根据圆周角定理求得APB=C=30,进而求得PAB=APB=30,ABP=120,根据垂径定理得到 OBAP,AD=PD,OBP=OBA=60,即可求得AOB 是等边三角形,从而求得 PB=OA=5,解直角三角形求得 PD,即可求得 PA【解答】解:连接 OA、OB、OP,C=30,APB=C=30,PB=AB,PAB=APB=30ABP=120,PB=AB,OBAP,AD=PD,OBP=OBA=60,OB=OA,AOB 是等边三角形,AB=OA=5,则 RtPBD
20、 中,PD=cos30PB=5=,AP=2PD=5,故选 D【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键10(3 分)(2017陕西)已知抛物线 y=x22mx4(m0)的顶点 M 关于坐标原点 O 的对称点为 M,若点 M在这条抛物线上,则点 M 的坐标为()A(1,5)B(3,13)C(2,8)D(4,20)【分析】先利用配方法求得点 M 的坐标,然后利用关于原点对称点的特点得到点 M的坐标,然后将点 M的坐标代入抛物线的解析式求解即可【解答】解:y=x22mx4=x22mx+m2m24=(xm)2m24点 M(m,
21、m24)点 M(m,m2+4)m2+2m24=m2+4解得 m=2m0,m=2M(2,8)故选 C【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点 M的坐标是解题的关键二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)11(3 分)(2017陕西)在实数5,0,中,最大的一个数是【分析】根据正数大于 0,0 大于负数,正数大于负数,比较即可【解答】解:根据实数比较大小的方法,可得05,故实数5,0,其中最大的数是故答案为:【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小12(3 分)(
22、2017陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分A如图,在ABC 中,BD 和 CE 是ABC 的两条角平分线若A=52,则1+2 的度数为64B.tan38152.03(结果精确到 0.01)【分析】A:由三角形内角和得ABC+ACB=180A=128,根据角平分线定义得1+2=ABC+ACB=(ABC+ACB);B:利用科学计算器计算可得【解答】解:A、A=52,ABC+ACB=180A=128,BD 平分ABC、CE 平分ACB,1=ABC、2=ACB,则1+2=ABC+ACB=(ABC+ACB)=64,故答案为:64;B、tan38152.57130.78832.0
23、3,故答案为:2.03【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键13(3 分)(2017陕西)已知 A,B 两点分别在反比例函数 y=(m0)和 y=(m)的图象上,若点 A 与点 B 关于 x 轴对称,则 m 的值为1【分析】设 A(a,b),则 B(a,b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求 m 的值【解答】解:设 A(a,b),则 B(a,b),依题意得:,所以=0,即 5m5=0,解得 m=1故答案是:1【点评】本题考查了反比例函数图象上点的坐标特征,关于 x 轴,y 轴对称的点的坐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 陕西省 铜川 中考 数学 答案
限制150内