《《圆的面积》教学设计【优秀3篇】_1.docx》由会员分享,可在线阅读,更多相关《《圆的面积》教学设计【优秀3篇】_1.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆的面积教学设计【优秀3篇】作为一名教学工作者,常常要根据教学需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。优秀的教学设计都具备一些什么特点呢?书包范文为大家带来了圆的面积教学设计【优秀3篇】,希望能够对大家的写作有一些帮助。圆的面积教案 篇一 教学目标 1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。 2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。 3、渗透转化的数学思想和极限思想。 教学重、难点:圆面积公式的推导与运用。 学具:16等份和32等
2、份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片 教学过程 一、设疑导入,激发动机 1、请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。 2、引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积) 3、引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。 二、动手操作,探索新知 1、猜想、引导,确定方法 师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化
3、为哪些平面图形呢? (学生可能会想到长方形、平行四边形、三角形、梯形等。) 师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形? (根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。) 2、动手操作,尝试探究 师请同学们动手剪拼一下,看到底能拼成什么图形。 (学生动手操作,小组合作探究) 师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果) 3、课件演示,突破难点 师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考: (1)
4、圆与有近似的长方形有什么关系? (2)把圆16等份和32等份后,拼成的图形有什么区别? (3)如果等分份数仅需增加,结果会怎样? 师:课件进一步演示把一个圆等分成64份、128份拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。 4、观察比较,导出公式 师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗? 学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。 因为长方形的面积=长宽 所以圆的面积=周长的一半半径,也就是S=rr=r2 (可能有的同学会把圆剪开后拼成了平行四边形、
5、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。) 5、尝试运用 出示例3,读题列式,学生尝试练习,反馈评价。 提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗? 2、完成第116页做一做的第1题。 3、看书质疑。 三、运用新知,解决问题 1、求下面各圆的面积,只列式不计算。 直径50分米 2、一块圆形铁板的半径是3分米,它的面积是多少平方分米? 3、小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米? 四、全课小结 这节课你自己运用了什么方法,学到了哪些知识? 五、课堂作业 第118页的第3题和第4题。
6、小学数学圆的面积教案 篇二 教学目标: 1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。 2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。 教学重点,难点: 掌握圆柱侧面积和表面积的计算方法。 运用所学的知识解决简单的实际问题。 教学过程: 一、引入新课: 前一节课我们已经认识了一个新朋友圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗? 1.圆柱是由平面和曲面围成的立体图形。 2.圆柱各部分的名称(两个底面,侧面,高)。 3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个
7、长方形的长等于圆柱的底面周长、宽等于圆柱的高。 同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。 二、探究新知: 以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积) 同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么? 教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。 板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积) 1.圆柱的侧面积 (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。 (2)出示圆柱的展开图:这个展开后的长方形的面积和
8、圆柱的侧面积有什么关系呢? (学生观察很容易看到这个长方形的面积等于圆柱的侧面积) (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长高) 2.侧面积练习:练习二第5题 学生审题,回答下面的问题: 这两道题分别已知什么,求什么? 小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。 3.理解圆柱表面积的含义。 (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆
9、柱的表面由上下两个底面和侧面组成。) (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。 公式:圆柱的表面积=圆柱的侧面积+底面积2 4.尝试练习。 (1)求下面各圆柱的侧面积。 底面周长2.5分米,高0.6分米。 底面直径8厘米,高12厘米。 (2)求下面各圆柱的表面积。 底面积是40平方厘米,侧面积是25平方厘米。 底面半径是2分米,高是5分米。 5.小结: 在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。) 三、巩固练习。 1.做第14页“做一做”。(求表面积包括哪些部分?) 2.练习二第6,7题。 四、课
10、后思考。 同学们想一想是不是所有的圆柱在计算表面积时都可以用公式:圆柱的表面积=圆柱的侧面积+底面积2来计算呢? 圆的面积教案 篇三 教学目标: 1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。 2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。 3.渗透转化的数学思想和极限思想。 教学重点: 正确计算圆的面积。 教学难点: 圆面积公式的推导。 教具准备: 多媒体课件二套,圆片。 一。情景导入 1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请
11、大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画【.SHUBAOC.COM】演示) 师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。 (板书:圆的面积) 2.师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示) 师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀? 生:这堂课我们要学习圆的面积是怎样求出来的。 生:学生圆的面积公式。 师:你们知道圆的面积公式后,你们还想到什么问题? 生:圆的面积公式根据什么推导出来的。 师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。 (通过创设情景,激发学
12、生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。) 二、动手操作,探索新知 1. 猜测(每项用课件出示) 师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ? 生:不等。 师:为什么? 生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。 师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来? 生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2
13、,总面积2r2。 师:圆的面积和正方形比较谁的面积大? 生:圆的面积大 师:可以观察出圆的面积范围在2r2-4r2 (这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,) 2. 回忆旧知, 师:圆能不能直接用面积单位支量呢?为什么? 生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。 师:该怎么办呢?(教室沉默) 师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论) 师:这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢? 生:我们可以用图形转化的方
14、法,求圆的面积。(把未知的转化为已知的) 师:这个办法很好。那么把圆形转化成什么图形呢? 评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。 3.动手操作 (1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。) 师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形) (2)师:请看大屏幕,16等份的和8等份谁拼成更接近长方形? 生:16等份
15、拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,) 师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示 (3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。) 学生汇报讨论结果。生答师继续演示课件。 生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。 因为长方形的面积长宽 所以圆的面积周长的一半半径 Sr Sr2 师:结合公式Sr
16、2,说说圆的面积是怎样推导出来的? (4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示) 生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。 因为 三角形的面积底高2 所以 圆的面积周长的半径的4倍 S4r2 Sr2 师:我们用三角形也推出了圆的面积公式 Sr2 。同学们还有其它图形来验证吗? (5)生:我们把圆转化成梯形来验证。(课件演示) 生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。 因为梯形的面积(上底下底)高2 所以圆的面积周长的一半半径的2倍
17、 S2r2 Sr2 用梯形的面积 3.小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(Sr2) 我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。 唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊! 圆的面积必需要具备哪些条件? 评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。 (三)课后巩固 1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。 (照应了开头,又学练习了面积的计算。) 2、 根据下面条件求出圆的面积 r =5分米 d =3米 3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积? (用学到的知识来解决生活中的问题,培养学生的应用能力) (四)师:这堂课大家学到了什么?有什么收获? (学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。) 评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。13
限制150内