2022年人教版五年级下册数学教案.docx
《2022年人教版五年级下册数学教案.docx》由会员分享,可在线阅读,更多相关《2022年人教版五年级下册数学教案.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年人教版五年级下册数学教案第1篇第2篇第3篇第4篇第5篇更多顶部书目第一篇:人教版五年级下册数学教案其次篇:人教版五年级下册数学教案约分第三篇:人教版五年级下册数学教案真分数和假分数第四篇:分数的意义和性质复习整理课人教版五年级下册数学教案第五篇:人教版五年级下册数学第一单元教案更多相关正第一篇:人教版五年级下册数学教案长方体和正方体的表面积长方体的表面积教学内容:p33-37教学目的:1、使学生理解长方体表面积的意义 , 驾驭长方体表面积的计算方法, 能够正确地进行计算 , 并能运用所学学问解决一些实际问题 。2在探究学习中建立初步的空间观念,发展初步合情推理实力量。3. 培育学生的
2、动手操作实力和共同探讨问题的习惯。4. 通过亲身参加探究实践活动 , 去获得主动的胜利的情感体验。充溢着探究与创建。教学重点: 长方体表面积计算的基本思路和方法。教学难点: 依据长方体的长、宽、高 , 确定每个面的长、宽是多少。教学设计:一、出示课题,学习目标1、使学生理解长方体表面积的意义 , 驾驭长方体表面积的计算方法, 能够正确地进行计算 , 并能运用所学学问解决一些实际问题 。二、自主探究分组操作, 探究长方体的表面积的含义、并建立它们的联系。同学们, 现在请大家利用桌面上的长方体、剪刀 ,看看把一个长方体或正方体的纸盒绽开是什么形态的呢?请在绽开图中,分别用上下前后左右标明6个面。视
3、察长方体绽开图,哪些面的面积相等?每个面的长和宽与长方体的长、宽、高有什么关系?学生分小组合作操作。三、各小组学生沟通汇报结果。板书 :( 长宽 + 长高 + 宽高 ) 2 。板书:(长2+宽2)底面周长高+长宽2长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,常常须要计算一些长方体或正方体的表面积。四、实践运用1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?说明 至少 的意思。独立计算,说说你是怎么计算的?2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的
4、包装纸?想一想怎样计算正方体的表面积呢?五、评价体验 今日你运用了什么学习方法 ? 学习上有什么收获 ? 你感受最深是什么 ? 学生之间相互评价。六、作业:1、看书2、实际测量长方体是一种很常见的物体, 在我们的四周随时都可以看到长方体, 同学们在教室内找一个长方体并求出它的表面积。学生沟通测量和计算的状况。板书设计:长方体的表面积长方体或正方体6个面的总面积,叫做它的表面积。长方体的表面积= ( 长宽 + 长高 + 宽高 ) 2课后反思:本节课就是让学生知道每个面的长和宽相对于长方体的长宽或长高或宽高组成。其次篇:人教版五年级下册数学教案约分人教版五年级下册数学教案约分教材说明本节教材由最大
5、公因数与约分两部分组成。最大公因数这部分内容是在学生驾驭了因数概念的基础上进行教学的,主要是为学习约分做打算。根据标准的要求,教材中只出现求两个数的最大公因数。教材通过例1引入公因数和最大公因数的概念。与原教材的不同有两点。一是例题创设了一个铺地砖的问题情境,由实际生活抽象出概念,而不是利用直观教具和学具引入概念。这样处理的处是便于揭示数学与现实世界的联系,有利于学生理解公因数、最大公因数概念的现实意义,也有利于培育学生的数学抽象实力。当然,从一起先就出现公因数、最大公因数的应用问题,问题解决与概念引入结合在一起,教学的难度自然要稍大些。二是依据标准,这里不再由公因数或最大公因数,引进互质数的
6、概念。这是精简数论初步学问的一个详细体现。在此基础上,教材通过例2教学求两个数的最大公因数的方法。原来,这须要从分解质因数讲起。先将两个数分别分解质因数,从中找出公有的质因数,同时要使学生理解,两个数全部公有质因数的积就是它们的最大公因数。然后再将两个数分别分解质因数的短除法合起来,导出求两个数最大公因数的短除法。现在标准中有关求最大公因数的要求是:“能找出两个自然数的公因数和最大公因数”。采纳“找”的方法,就不再须要分解质因数与短除法。事实上,即便在过去学了分解质因数和短除法之后,也极少有学生在约分时运用。所以这一改进,不仅大大降低了学习的难度,而且也符合学生学习约分的实际须要。内容精简之后
7、,出于拓展学生学问面的考虑,教材在练习十五前、后,各支配了一个“你知道吗?”栏目,分别介绍怎样利用分解质因数的方法求两个数的最大公因数,以及互质数的概念。本节教材的其次部分内容约分,作为分数基本性质的干脆应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的相识,还为学习分数四则运算打下基础。约分时,还要用到公因数、最大公因数等学问,这些已在前面的教学中做了打算。要驾驭约分的方法,除了要能很快看出分子、分母大于1的公因数之外,很重要的一点是能判定约分的结果是不是最简分数。因此,教材首先通过例3,借助一个实际问题的推断,引入最简分数的概念。然后通过例4,教学约分的一般方法。同时在学
8、生会求两数最大公因数的基础上,启发他们思索,有没有更简便的方法?即如能看出分子、分母的最大公因数,则用最大公因数一次约分比较简便,以此促使学生敏捷运用所学学问。在此基础上,归纳约分的意义,并介绍了约分时的常用书写形式。在本节教材中,支配了两个练习,分别协作最大公因数与约分两部分内容的学习。两个练习的共同特点,一是练习形式比较多样,有利于提高学生的练习爱好,提高练习的效率;二是加强了联系实际的应用练习,有利于培育学生的数学应用意识与实力。教学建议1. 用教材资源,把握联系实际的“度”。本单元教材在教学公因数和最大公因数概念时,采纳了由实际问题引入概念的方式。在练习中,也支配有应用最大公因数的实际
9、问题。这些教材资源应当充分利用。考虑到从现实情境中抽象出两个数的最大公因数的数学问题大多具有肯定的思维难度,因此教学时不宜过多地补充其他情境的类似问题,以免增加学生的学习困难。2. 适当补充推断2、5、3的倍数的练习。对学生来说,驾驭约分的方法并不难,但要娴熟进行约分,关键在于能够很快地看出分子、分母是否含有公因数2、5、3等。而且,推断约分的结果是不是最简分数,即推断分子、分母是否只有公因数1,也要推断分子、分母是否含有大于1的公因数,才能得出结论。因此,教学中可以依据本班学生的实际状况,适当补充一些判别2、5、3的倍数的练习。为学习约分供应必要的扎实基础。3. 适当加强口算练习,帮助学生驾
10、驭约分方法。约分是化简分数的基本手段,在分数的四则运算中应用较多。为了帮助学生较为娴熟地驾驭约分的方法,行之有效的措施之一就是开展常常性的口算。这样费时不多,练习效率较高。4. 本节内容可以支配4课时教学。详细内容的说明和教学建议1.例1及“做一做”。编写意图(1)例1创设了用整块的正方形地砖铺满长方形地面的问题情境,通过求方砖的边长及其最大值,抽象出公因数、最大公因数的概念。虽然在日常生活中常常可以看到用方砖铺地的情境,但小学生一般很少参加这类劳动,所以并无干脆的体验。为此,教材以插图的形式,提示学生在长方形的纸上画一画,看看能画出多少个正方形。让学生通过画图操作,找出正方形的边长以分米为单
11、位,可以取哪些整数。进而发觉,这些整数原来既是地面长16的因数,又是地面宽12的因数。学生在解决问题的过程中获得了感悟,就能为抽象出概念供应感性相识基础。这里,教材还采纳了集合圈的图示方式,使16、12各自的因数、公有的因数,更加显明、直观地逐一凸现出来。这一解决问题、引出概念的过程,使公因数、最大公因数这两个抽象的概念,变得特别详细、直观,学生摸得着、看的见。从而增加了感知事实、建立概念的效果。(2)例1下面的“做一做”,事实上是采纳由学生演示的形式,将12、18的因数分成各自特有的与公有的因数三部分,正对应两个集合圈中的三个部分。通过练习,可以帮助学生进一步理解因数和公因数的联系与区分。教
12、学建议(1)教学例1前,可以先复习因数的概念,并让学生分别写出16与12的全部因数。(2)教学例1时,首先应当加强审题,使学生理解题意,在贮存室的长方形地面上铺正方形砖;理解铺地的要求,既要铺满,又要都用整块的方砖。接着让学生自己用正方形纸片拼摆,或在纸上画一画。假如采纳拼摆的方法,须要打算足够数量的边长1厘米、2厘米、3厘米、4厘米、5厘米的正方形厚纸片,并在一张纸上画长16厘米、宽12厘米的长方形,表示地面,让学生把正方形纸片拼摆在长方形内,模拟铺地砖。考虑到完成拼摆比较费时,当纸片厚度不够时操作起来比较困难,因此也可以制作多媒体课件,进行演示,让学生采纳画图的方法,进行探究。为了提高画示
13、意图的效率,可以课前印画有长方形的方格纸,发给学生每人一张,然后四人小组合作,每人选择方砖的一种边长,试一试。只要画满一条长边,一条宽边就可以了。通过沟通,使学生明确:要使所用的正方形地砖都是整块的,地砖的边长必需既是16的因数,又是12的因数。于是从复习题已写出的16的因数、12的因数中找出公有的因数,得出问题的答案;地砖的边长可以是1 dm、2 dm、4 dm,最大是4 dm。然后,老师可以出示事先仿照课本上的集合图,画在透亮纸上的两个集合圈,再把它们往一起移动,使两个集合圈相交,并使公有的因数重合,成为课本中的图示那样。使学生形象地看出相交部分就是16和12的公因数。也可以出示相交集合圈
14、(如右图),让学生自己把16、12的因数填写在圈内适当的部分。在此基础上给出公因数和最大公因数的描述。(3)第80页“做一做”的练习,可以让学生独立在课本下面写一写,再说说哪几个数写在左边,哪几个数写在右边,哪几个数写在中间。也可以请8位同学拿着写有数的卡片到讲台上按要求站一站,请大家看看他们站的是否符合要求。这样分成三部分各表示什么。2例2及“做一做”。编写意图(1)例2以18和27为例,教学怎样求两个数的最大公因数。教材给出了两种方法。一种方法是先分别写出18和27各自的因数,从中找出公因数,再看哪个最大。教材的插图介绍了两个同学的不同表示方式。另一种方法是先写出18的因数,从中圈出27的
15、因数,再看哪个最大。这种方法同样用插图加以呈现。接下去,教材通过小精灵提出问题:“你还有其他方法吗?和同学们探讨一下。”从而表达了算法多样化、特性化的教学意图。(2)第81页上的“做一做”,要求学生找出每组数的最大公因数,并留意视察,看能发觉什么。其中4和8、16和32成倍数关系,它们的最大公因数就是两个数中较小的那个数;1和7、8和9的公因数只有1,所以它们的最大公因数都是1。很明显,这道题的意图是让学生通过练习,发觉求两个数的最大公因数的两种特别状况。教学建议(1)教学例2时,可以干脆出示例题,让学生先独立思索,用自己想到的方法试着找出18和27的最大公因数。然后小组探讨,相互启发,再全班
16、沟通。独立思索有困难的学生,可以看看书上是怎样找的,看懂了在小组内沟通。一般学生除了想到课本上介绍的两种方法之外,还会有学生想到:先写出27的因数,再看27的因数中哪些是18的因数,从中找出最大的。老师还可以启发学生对这些方法加以改进。比如:写出18的因数,1、2、3、6、9、18从大到小依次看18的因数是不是27的因数。即18不是27的因数,9是27的因数,所以9是18和27的最大公因数。当然也可以在以后的练习中提示学生不断自己总结阅历,有方法向全班同学介绍。(2)第81页上的“做一做”,可以让学生独立完成,独立视察,每组数有什么特点,再作沟通。老师可以加以总结,并指出这是求两数最大公因数的
17、两种特别状况:当两数成倍数关系时,较小的数就是它们的最大公因数;当两数只有公因数1时,它们的最大公因数也是1。老师可以告知学生,像这样能够干脆看出最大公因数的,就不用再从头去找公因数了。(3)第81页上的“你知道吗?”可以让学生课外阅读。如班级的基础较,也可在课堂上作为拓展学习的内容,指导学生自学。老师可以提示,两个数全部公有质因数的积,就是这两个数的最大公因数。3. 关于练习十五中一些习题的说明和教学建议。第1题,巩固公因数的概念。第2题,练习后可以启发学生将8组数分成三类。其中两类是特别状况,即最大公因数是1(如5和9,15和16);最大公因数是较小数本身(如34和17,16和48);其余
18、是第三类一般状况(如剩下的4组)。老师可以组织学生沟通找最大公因数的阅历。第4题,同样是找出两数最大公因数练习,但对后面学习约分有更干脆的帮助。第6题,渗透了互质数组成的几种状况。第7题,有关两数最大公因数的实际问题。要剪成“同样大小的正方形而没有剩余”,正方形的边长必需既是73的因数,又是50的因数。要使正方形最大,所以要找73和50的最大公因数。第8题,有关两数最大公因数的实际问题。“要使每排人数相等”则每排人数必需既是48的因数,又是36的因数。36的因数有36,18,12?36不是48的因数,18不是48的因数,12是48的因数,所以12是36和48的最大公因数,即每排最多有12人,这
19、时男生有48124(排)女生有36123(排)第9*题,要达到“截成同样长的小棒,不能有剩余”的要求,每根小棒的长必需是12、16和44的公因数。因为要求每根小棒最长,所以要找出12、16和44的最大公因数。可以分别写出12、16和44的因数,再找出它们的最大公因数。4. 例3及“做一做”。编写意图(1)例3采纳插图形式,呈现了游泳竞赛的情境,观众中三位同学的对话,构成了这个实际问题的条件与问题。教材用两种方法,说明75/1013/4,并由此引出最简分数的概念。这就为例4教学约分,供应了推断约分结果是否符合要求的依据。(2)例3下面的“做一做”,支配了两道题,第1题要求找出最简分数,第2题为了
20、找出相等的分数也可以把非最简分数化成最简分数。教学建议(1)教学例3前,可以先复习分数的基本性质。(2)教学例3时,应当先让学生看图说说已知条件是什么,要求解答的问题是什么。接着,不妨让学生猜一猜,75/101与3/4是否相等?想一想,怎样证明它们相等?然后让学生根据自己的思路,依据分数的基本性质,算一算。课本给出的两种方法,学生一般都能想到。解答完了,再以3/4为例指出:像这样分子和分母只有公约数1的分数叫做最简分数。还可以让学生自己举出几个这样的分数。(3)例3下面的“做一做”,可以让学生独立完成。第1题,可以在课本上打“”或“”;第2题可以在课本上连线。5. 例4及“做一做”。编写意图(
21、1)有了最简分数的概念,例4明确提出“把24/30化成最简分数”。教材先介绍用分子和分母大于1的公因数去除的方法。然后要求学生“想一想:有没有更简便的方法?”同时采纳填空的形式,帮助学生写出简便方法的计算过程。简单看出,这里的教学思路是,由老师引导“逐次约分”,使学生受到启发,自己想到“一次约分”的简便方法。在此基础上教材归纳出约分的意义,并介绍了常用的逐次约分与一次约分的书写方式。(2)协作例4的“做一做”,要求学生先找出最简分数,再把不是最简分数的化成最简分数,用以巩固约分的方法。教学建议(1)教学例4前,可以给出一组分数,让学生先找出其中的最简分数,再说出剩下分数的分子与分母有哪些大于1
22、的公因数。以此激活相关技能,为学习约分做打算。(2)老师出示例4后,可以先让学生看课本说一说化简24/30的过程及其依据,再思索有没有更简便的方法?让学生把自己想到的方法填写在课本上,然后通过沟通,使全体学生明确,假如一下能看出分子和分母的最大公约数,干脆用它们的最大公因数去除比较简便。(3)例4下面的“做一做”可以让学生独立完成,核对结果并沟通各自所用的方法。6. 关于练习十六中一些习题的说明和教学建议。第1题,是用图示说明12/16=6/8,练习时不妨让学生再说一说,第2个图还可以化简为几分之几。第3题,可先让学生依据最简分数的概念,判别哪些已经约成了最简分数,哪些还没有约成最简分数,然后
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版五 年级 下册 数学教案
限制150内