2023年初中升学考试数学专题复习试题分类汇编之十 相似三角形.docx
《2023年初中升学考试数学专题复习试题分类汇编之十 相似三角形.docx》由会员分享,可在线阅读,更多相关《2023年初中升学考试数学专题复习试题分类汇编之十 相似三角形.docx(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学试题分类汇编之十相似三角形一、 选择题9(2023成都)(3分)如图,直线,直线和被,所截,则的长为A2B3C4D解:直线,选:10(2023哈尔滨)(3分)如图,在中,点在边上,连接,点在边上,过点作,交于点,过点作,交于点,则下列式子一定正确的是ABCD解:,故选:8.(2023河北)在如图所示的网格中,以点为位似中心,四边形的位似图形是( )A. 四边形B. 四边形C. 四边形D. 四边形解:如图所示,四边形的位似图形是四边形故选:A12.(2023四川绵阳)如图,在四边形ABCD中,ADBC,ABC=90,AB=,AD=2,将ABC绕点C顺时针方向旋转后得,当恰好过点
2、D时,为等腰三角形,若=2,则=( )A. B. C. D. 【解析】A.解:过点D作DEBC于点E.则BE=AD=2,DE=AB=,设BC=C=,CE=-2.为等腰三角形,C=BD=,DC=90DC=在RTDCE中,由勾股定理得:,即:,解得:,(舍去)。在RTABC中,AC=由旋转得:BC=C,AC=,即:.故选A.10.(2023无锡)如图,等边的边长为3,点在边上,线段在边上运动,有下列结论:与可能相等;与可能相似;四边形面积的最大值为;四边形周长的最小值为其中,正确结论的序号为( )A. B. C. D. 解:线段在边上运动,,与不可能相等,则错误;设,即,假设与相似,A=B=60,
3、即,从而得到,解得或(经检验是原方程的根),又,解得的或符合题意,即与可能相似,则正确;如图,过P作PEBC于E,过F作DFAB于F,设,由,得,即,B=60,A =60,,则,四边形面积为:,又,当时,四边形面积最大,最大值为:,即四边形面积最大值为,则正确;如图,作点D关于直线的对称点D1,连接D D1,与相交于点Q,再将D1Q沿着向B端平移个单位长度,即平移个单位长度,得到D2P,与相交于点P,连接PC,D1Q=DQ=D2P,且AD1D2=120,此时四边形的周长为:,其值最小,D1AD2=30,D2A D=90,根据股股定理可得,四边形的周长为:,则错误,所以可得正确,故选:D8.(2
4、023重庆A卷)如图,在平面直角坐标系中,的顶点坐标分别是,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段DF的长度为( )A. B. 2C. 4D. 解:以原点为位似中心,在原点的同侧画DEF,使DEF与ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),D(2,4),F(6,2),DF=,故选:D6.(2023重庆B卷)如图,ABC与DEF位似,点O为位似中心.已知OAOD=12,则ABC与DEF的面积比为( )A. 12 B. 13 C. 14 D.15.答案C.6.(2023甘肃定西)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的
5、腰部以下与全身的高度比值接近0.618,可以增加视觉美感.若图中为2米,则约为( )A.1.24米B.1.38米C.1.42米D.1.62米答案:A7(2023四川遂宁)(4分)如图,在平行四边形ABCD中,ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF2FD,则BEEG的值为()A12B13C23D34解:由AF2DF,可以假设DFk,则AF2k,AD3k,四边形ABCD是平行四边形,ADBC,ABCD,ABCD,AFBFBCDFG,ABFG,BE平分ABC,ABFCBG,ABFAFBDFGG,ABCD2k,DFDGk,CGCD+DG3k,ABDG,ABECGE,BE
6、EG=ABCG=2k3k=23,故选:C9(2023广西南宁)(3分)如图,在ABC中,BC120,高AD60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A15B20C25D30解:设正方形EFGH的边长EFEHx,四边EFGH是正方形,HEFEHG90,EFBC,AEFABC,AD是ABC的高,HDN90,四边形EHDN是矩形,DNEHx,AEFABC,(相似三角形对应边上的高的比等于相似比),BC120,AD60,AN60x,解得:x40,AN60x604020 故选:B11(2023广西玉林)(3分)(2023玉林)一个三角形木架三边长分别
7、是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A一种B两种C三种D四种解:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的木条上截下两段长分别为xcm,ycm(x+y120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,当长60cm的木条与100cm的一边对应,则x75=y120=60100,解得:x45,y72;当长60cm的木条与120cm的一边对应,则x75=y100=
8、60120,解得:x37.5,y50答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段故选:B11(2023贵州遵义)(4分)如图,ABO的顶点A在函数y=kx(x0)的图象上,ABO90,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q若四边形MNQP的面积为3,则k的值为()A9B12C15D18解:NQMPOB,ANQAMPAOB,M、N是OA的三等分点,ANAM=12,ANAO=13,SANQSAMP=14,四边形MNQP的面积为3,SANQ3+SANQ=14,SANQ1,1SAOB=(ANAO)2=19, S
9、AOB9,k2SAOB18, 故选:D6(3分)(2023荆门)ABC中,ABAC,BAC120,BC23,D为BC的中点,AE=14AB,则EBD的面积为()A334B338C34D38解:连接AD,作EFBC于F,ABAC,BAC120,D为BC的中点,ADBC,AD平分BAC,BC30在RtABD中,BD=12BC=3,B30,AB=BDcos30=332=2,AD=12AB=1,AE=14AB,BEAB=34,EFBC,ADBC,EFAD,BEFBAD,EFAD=BEAB,EF1=34EF=34,SBDE=12BDEF=12334=338,选:B5(2023山西)(3分)泰勒斯是古希腊
10、时期的思想家,科学家,哲学家,他最早提出了命题的证明泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A图形的平移B图形的旋转C图形的轴对称D图形的相似选:D10(2023浙江温州)(4分)如图,在RtABC中,ACB90,以其三边为边向外作正方形,过点C作CRFG于点R,再过点C作PQCR分别交边DE,BH于点P,Q若QH2PE,PQ15,则CR的长为()A14B15C83D65解:如图,连接EC,CH设AB交CR于J四边形ACDE,四边形BCJHD都是正方形,ACEBCH45,ACB90,BCI90,ACE+ACB+BCH18
11、0,ACB+BCI90B,C,H共线,A,C,I共线,DEAIBH,CEPCHQ,ECPQCH,ECPHCQ,PCCQ=CECH=EPHQ=12,PQ15,PC5,CQ10,EC:CH1:2,AC:BC1:2,设ACa,BC2a,PQCRCRAB,CQAB,ACBQ,CQAB,四边形ABQC是平行四边形,ABCQ10,AC2+BC2AB2,5a2100,a22(负根已经舍弃),AC25,BC45,12ACBC=12ABCJ,CJ=254510=4,JRAFAB10,CRCJ+JR14,故选:A12(2023海南)(3分)如图,在矩形ABCD中,AB6,BC10,点E、F在AD边上,BF和CE交
12、于点G,若EFAD,则图中阴影部分的面积为()A25B30C35D40解:过点G作GNAD于N,延长NG交BC于M,四边形ABCD是矩形,ADBC,ADBC,EFAD,EFBC,ADBC,NGAD,EFGCBG,GMBC,GN:GMEF:BC1:2,又MNBC6,GN2,GM4,SBCG10420,SEFG525,S矩形ABCD61060,S阴影6020535故选:C二、 填空题15(2023广州)如图7,正方形ABCD中,ABC绕点A逆时针旋转到,分别交对角线BD于点E,F,若,则的值为 * 【答案】16. 提示:由EAFEDA,得到:,所以:,=1614.(2023河南)如图,在边长为的正
13、方形中,点分别是边的中点,连接点分别是的中点,连接,则的长度为_【答案】1【详解】过E作,过G作,过H作,垂足分别为P,R,R,与相交于I,如图,四边形ABCD是正方形,四边形AEPD是矩形,点E,F分别是AB,BC边的中点, ,点G是EC的中点,是的中位线,同理可求:,由作图可知四边形HIQP是矩形,又HP=FC,HI=HR=PC,而FC=PC, ,四边形HIQP是正方形, 是等腰直角三角形,故答案为:116.(2023苏州)如图,在中,已知,垂足为,若是的中点,则_【详解】为的中点,故答案为:117(2023苏州).如图,在平面直角坐标系中,点、的坐标分别为、,点在第一象限内,连接、已知,
14、则_【答案】解:如图,过点C作CDy轴,交y轴于点D,则CDAO,DCECAO,BCA2CAO,BCA2DCE,DCEDCB,CDy轴,CDECDB90,又CDCD,CDECDB(ASA),DEDB,B(0,4),C(3,n),CD3,ODn,OB4,DEDBOBOD4n,OEODDEn(4n)2n4,A(4,0),AO4,CDAO,AOECDE, ,解得:,故答案:15.(2023乐山)把两个含角的直角三角板按如图所示拼接在一起,点为的中点,连结交于点则=_解:连接CE,设CD=2x,在RtACD和RtABC中,BAC=CAD=30,D=60,AD=4x,AC=,BC=x,AB=x,点E为A
15、D的中点,CE=AE=DE=2x,CED为等边三角形,CED=60,BAD=BAE+CAD=30+30=60,CED=BAD,ABCE,在BAE中,BAE=CAD=30AF平分BAE, , 故答案为:.18.(2023无锡)如图,在中,点,分别在边,上,且,连接,相交于点,则面积最大值为_解:如图1,作DGAC,交BE于点G, , AB=4 若面积最大,则面积最大,如图2,当点ABC为等腰直角三角形时,面积最大,为, 面积最大值为 +故答案为:14(2023上海)(4分)九章算术中记载了一种测量井深的方法如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井
16、口的直径AB交于点E,如果测得AB1.6米,BD1米,BE0.2米,那么井深AC为7米解:BDAB,ACAB,BDAC,ACEDBE,ACBD=AEBE,AC1=1.40.2,AC7(米),答:井深AC为7米12(2023吉林)(3分)如图,ABCDEF若,BD5,则DF10解:ABCDEF, ,DF2BD2510 故答案为10 13(2023吉林)(3分)如图,在ABC中,D,E分别是边AB,AC的中点若ADE的面积为,则四边形DBCE的面积为解:D,E分别是ABC的边AB,AC的中点, DE是ABC的中位线,DEBC,DEBC, ADEABC,()2()2,ADE的面积为, ABC的面积为
17、2,四边形DBCE的面积2, 故答案为:7(2023黑龙江牡丹江)(3分)如图,在中,点在边上将沿直线翻折,点落在点处,连接,交于点若,则【解答】解:,设,则,由于折叠,且,即为等腰直角三角形,故答案为:8(2023黑龙江牡丹江)(3分)如图,在中,是的中点,点在上,垂足分别为,连接则下列结论中:;若平分,则;,正确的有(只填序号)解:,又,故正确;由全等可得:,连接,点是中点,在和中,又,即为等腰直角三角形,故正确,故正确,设与交于点,连接,为等腰直角三角形,而,故正确;,平分,即,为等腰直角三角形,故正确;,故正确;故答案为:15(2023山西)(3分)如图,在RtABC中,ACB90,A
18、C3,BC4,CDAB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为解:如图,过点F作FHAC于H 在RtABC中,ACB90,AC3,BC4,AB5,CDAB,SABCACBCABCD,CD,AD,FHEC,ECEB2,设FH2k,AH3k,CH33k,tanFCH,k,FH,CH3,CF,DF,故答案为17(2023四川眉山)(4分)如图,等腰ABC中,ABAC10,边AC的垂直平分线交BC于点D,交AC于点E若ABD的周长为26,则DE的长为解:边AC的垂直平分线交BC于点D,交AC于点E,AED90,AECEAC5,ADCD,DACC,ABD的周长为26,AB+BD+AD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年初中升学考试数学专题复习试题分类汇编之十 相似三角形 2023 年初 升学考试 数学 专题 复习 试题 分类 汇编 相似 三角形
限制150内