2021年普通高等学校招生全国统一考试(湖北卷).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021年普通高等学校招生全国统一考试(湖北卷).pdf》由会员分享,可在线阅读,更多相关《2021年普通高等学校招生全国统一考试(湖北卷).pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、普 通 高 等 学 校 招 生 全 国 统 一 考 试 湖 北 卷(文 史 类)本 试 卷 分 第 I 卷(选 择 题)和 第 II卷(非 选 择 题)两 部 分,共 150分,考 试 时 间 120分 钟.第 I 卷 一、选 择 题(本 大 题 共 1 0小 题,每 小 题 5 分,共 5 0分.在 每 小 题 给 出 的 四 个 选 项 中,只 有 一 项 是 符 合 题 目 要 求 的)1.已 知 全 集。=1,2,3,4,5,集 合 A=1,2,B=2,3,4,贝!|8 0 必=()A.2 B.3,4C.1,4,5 D.2,3,4,5)2.已 知 则 双 曲 线 G:熹 一 熹=1 与
2、 G:舟 一 高=1 的()A.实 轴 长 相 等 B.虚 轴 长 相 等 C.离 心 率 相 等 D.焦 距 相 等 3.在 一 次 跳 伞 训 练 中,甲、乙 两 位 学 员 各 跳 一 次.设 命 题 p 是“甲 降 落 在 指 定 范 围”,g是“乙 降 落 在 指 定 范 围”,则 命 题“至 少 有 一 位 学 员 没 有 降 落 在 指 定 范 围”可 表 示 为()A.皤 p)V 皤 g)B.p V(q)C.皤)/皤 4)D.pV g4.四 名 同 学 根 据 各 自 的 样 本 数 据 研 究 变 量 x,j 之 间 的 相 关 关 系,并 求 得 回 归 直 线 方 程,分
3、 别 得 到 以 下 四 个 结 论:y 与 x 负 相 关 且 y=2.347x6.423;y 与 x 负 相 关 且 y=-3.4 7 6 x+5.6 4 8;y 与 x正 相 关 且=5.437x+8.493;y 与 x 正 相 关 且。=-4.3 2 6 x-4.578.其 中 一 定 不 正 确 的 结 论 的 序 号 是()A.B.C.(3)D.5.小 明 骑 车 上 学,开 始 时 匀 速 行 驶,途 中 因 交 通 堵 塞 停 留 了 一 段 时 间 后,为 了 赶 时 间 加 快 速 度 行 驶.与 以 上 事 件 吻 合 得 最 好 的 图 象 是()c6.将 函 数,=由
4、+或 11*(*611)的 图 象 向 左 平 移 皿/71 0)个 单 位 长 度 后,所 得 到 的 图 象 关 于 y 轴 对 称,则 机 的 最 小 值 是()7.已 知 点 A(1,1),3(1,2),C(-2,-1),0(3,4),则 向 量 布 在 而 方 向 上 的 投 影 为()A岖 B岖 A,2 2_ 3 2 妪 J 2 u,28.x 为 实 数,x 表 示 不 超 过 x 的 最 大 整 数,则 函 数/(x)=x 在 R 上 为()A.奇 函 数 B.偶 函 数 C.增 函 数 D.周 期 函 数 9.某 旅 行 社 租 用 A,B 两 种 型 号 的 客 车 安 排
5、900名 客 人 旅 行,4,B 两 种 车 辆 的 载 客 量 分 别 为 3 6人 和 6 0人,租 金 分 别 为 1 600元 糜 和 2 400元/辆,旅 行 社 要 求 租 车 总 数 不 超 过 21辆,且 8 型 车 不 多 于 A 型 车 7 辆,则 租 金 最 少 为()A.31 200 元 B.36 000 元 C.36 800 元 D.38 400 元 1 0.已 知 函 数 1A x)=x(ln x-a x)有 两 个 极 值 点,则 实 数 a 的 取 值 范 围 是()A.(-8,0)B.(0,I)C.(0,1)D.(0,+8)第 n卷 二、填 空 题(本 大 题
6、 共 7 小 题,每 小 题 5 分,共 3 5分.把 答 案 填 在 题 中 横 线 上)11.i为 虚 数 单 位,设 复 数 Zl,Z2在 复 平 面 内 对 应 的 点 关 于 原 点 对 称,若 Z l=2 3 i,则 Z 2=12.某 学 员 在 一 次 射 击 测 试 中 射 靶 1 0次,命 中 环 数 如 下:7,8,7,9,5,4,9,10,7,4贝!I:(1)平 均 命 中 环 数 为;(2)命 中 环 数 的 标 准 差 为.13.阅 读 如 图 所 示 的 程 序 框 图,运 行 相 应 的 程 序,若 输 入 m 的 值 为 2,则 输 出 的 结 果 i=(W)J
7、R=R*i|已 知 圆 O:x2+y2=5,直 线 1:xcos 0+jsin 8=1()”.设 圆。上 到 直 线 I的 距 离 等 于 1 的 点 的 个 数 为 k,则 k=.15.在 区 间-2,4 上 随 机 地 取 一 个 数 x,若 x 满 足 仅 区 机 的 概 率 为 则 机=.16.我 国 古 代 数 学 名 著 数 书 九 章 中 有“天 池 盆 测 雨”题:在 下 雨 时,用 一 个 圆 台 形 的 天 池 盆 接 雨 水.天 池 盆 盆 口 直 径 为 二 尺 八 寸,盆 底 直 径 为 一 尺 二 寸,盆 深 一 尺 八 寸.若 盆 中 积 水 深 九 寸,则 平
8、地 降 雨 量 是 寸.(注:平 地 降 雨 量 等 于 盆 中 积 水 体 积 除 以 盆 口 面 积;一 尺 等 于 十 寸)17.在 平 面 直 角 坐 标 系 中,若 点 P(x,y)的 坐 标 x,y 均 为 整 数,则 称 点 y尸 为 格 点.若 一 个 多 边 形 的 顶 点 全 是 格 点,则 称 该 多 边 形 为 格 点 多 m边 形.格 点 多 边 形 的 面 积 为 s,其 内 部 的 格 点 数 记 为 N,边 界 上 的 3 p s z z格 点 数 记 为 L.例 如 图 中 4 8 C 是 格 点 三 角 形,对 应 的 S=L N=0,L=4.1 2 3 4
9、 5 图 中 格 点 四 边 形。EFG对 应 的 S,N,L分 别 是(2)已 知 格 点 多 边 形 的 面 积 可 表 示 为 S=a N+6 L+c,其 中 a,b,c 为 常 数.若 某 格 点 多 边 形 对 应 的 N=7 L L=1 8,则 5=(用 数 值 作 答).三 解 答 题(本 大 题 共 5 小 题,共 6 5分.解 答 应 写 出 文 字 说 明、证 明 过 程 或 演 算 步 骤)18.(本 小 题 满 分 1 2分)在 A 5 C中,角 A,B,C对 应 的 边 分 别 是 a,b,c,已 知 cosZ A-Bcos(5+0=1.(1)求 角 A 的 大 小;
10、(2)若 ABC 的 面 积 S=5,j,b=5,求 sinBsinC 的 值.19.(本 小 题 满 分 1 3分)已 知 5“是 等 比 数 列%的 前 项 和,54,52,S3成 等 差 数 列,且 改+。3+。4=18.(1)求 数 列 斯 的 通 项 公 式.(2)是 否 存 在 正 整 数,使 得 S,2 0 1 3?若 存 在,求 出 符 合 条 件 的 所 有 的 集 合;若 不 存 在,说 明 理 由.20.(本 小 题 满 分 1 3分)如 图,某 地 质 队 自 水 平 地 面 A,B,C三 处 垂 直 A f B向 地 下 钻 探,自 A 点 向 下 钻 到 A i处
11、发 现 矿 藏,再 继 续 下 钻 到 A2 R处 后 下 面 已 无 矿,从 而 得 到 在 A 处 正 下 方 的 矿 层 厚 度 为 4 4=4,4 月 车 Z.y Bi同 样 可 得 在 B,C 处 正 下 方 的 矿 层 厚 度 分 别 为 BiBz=d2,GC2=d3,/且 小“2(),b0,已 知 函 数/W=子 普.(1)当 aW 时,讨 论 函 数 x)的 单 调 性.(2)当 x 0时,称 八)为 a、6 关 于 x 的 加 权 平 均 数.判 断 ZU),剧 是 否 成 等 比 数 列,并 证 明 黑 内;a、b 的 几 何 平 均 数 记 为 G,称 黑 为。、b 的
12、调 和 平 均 数,记 为 H,若 Hf(x)G,求 x 的 取 值 范 围.22.(本 小 题 满 分 1 4分)如 图,已 知 椭 圆 C i与 Ci的 中 心 在 坐 标 原 点 O,1长 轴 均 为 M N 且 在 x 轴 上,短 轴 长 分 别 为 2m,2n(mn)f过 原 点且 不 与 X轴 重 合 的 直 线/与 Ci,G 的 四 个 交 点 按 纵 坐 标 从 大 到 小 依 次 为 A,B,C,D.记 2=T,A B D M 和 A B N的 面 积 分 别 为 S i和 S2.(1)当 直 线/与 y 轴 重 合 时,若&=裕 2,求 的 值;(2)当 2 变 化 时,是
13、 否 存 在 与 坐 标 轴 不 重 合 的 直 线/,使 得 Si=Z S 2?并 说 明 理 由.湖 北 卷(文 史 类)1.解 析:先 求 再 找 公 共 元 素.1,2,3,4,5,4=1,2,.源=3,4,5,3,4 Cl 3,4,5=3,4.答 案:B2.解 析:先 确 定 实 半 轴 和 虚 半 轴 的 长,再 求 出 半 焦 距.双 曲 线 G 和 G 的 实 半 轴 长 分 别 是 sin 6和 cos 6,虚 半 轴 长 分 别 是 cos 6和 sin 0,则 半 焦 距 c都 等 于 1,故 选 D.答 案:D3.解 析:根 据 逻 辑 联 结 词“或”“且”“非”的
14、含 义 判 断.依 题 意,P:“甲 没 有 降 落 在 指 定 范 围”,“乙 没 有 降 落 在 指 定 范 围”,因 此“至 少 有 一 位 学 员 没 有 降 落 在 指 定 范 围”可 表 示 为 0 V q).答 案:A4.解 析:根 据 正 负 相 关 性 的 定 义 作 出 判 断.由 正 负 相 关 性 的 定 义 知 一 定 不 正 确.答 案:D5.解 析:先 分 析 小 明 的 运 动 规 律,再 结 合 图 象 作 出 判 断.距 学 校 的 距 离 应 逐 渐 减 小,由 于 小 明 先 是 匀 速 运 动,故 前 段 是 直 线 段,途 中 停 留 时 距 离 不
15、 变,后 段 加 速,直 线 段 比 前 段 下 降 的 快,故 应 选 C.答 案:c6.解 析:先 将 函 数 解 析 式 化 简,再 写 出 平 移 后 的 解 析 式,然 后 根 据 函 数 为 偶 函 数 求 得 的 值.由 于 y=Ay3cos x+sin x=2cos向 左 平 移 M 加 0)个 单 位 长 度 后 得 到 函 数 y=2cos x+z z T-的 图 象.由 于 该 图 象 关 于 y 轴 对 称,所 以 9一 段=A n(4WZ),于 是=在n 4-(AeZ),又。0,故 当 A=0 时,取 最 小 值 O 0答 案:B7.解 析:首 先 求 出 威 面 的
16、 坐 标,然 后 根 据 投 影 的 定 义 进 行 计 算.由 已 知 得 荔 三(2,1),0)=(5,5),因 此 宓 在 而 方 向 上 的 投 影 为 丝 卫=埠=平.cb 5小 2答 案:A8.解 析:首 先 理 解 题 意,画 出 函 数 的 图 象.函 数 的 图 象(图 象 略)在 两 个 整 数 之 间 都 是 斜 率 为 1 的 线 段(不 含 终 点),故 选 D.答 案:D9.解 析:先 根 据 题 意 列 出 约 束 条 件 和 目 标 函 数,通 过 平 移 目 计 厂 2i1标 函 数 加 以 解 决,设 租 用 4 型 车 X 辆,6 型 车 y 辆,目 标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 普通高等学校 招生 全国 统一 考试 湖北
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内