初中几何题练习专项训练.doc
《初中几何题练习专项训练.doc》由会员分享,可在线阅读,更多相关《初中几何题练习专项训练.doc(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 初中几何练习题一 三角形1.三角形的有关概念一、填空题:1、三角形的三边为1,9,则的取值范围是 。2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为 。3、在ABC中,若C2(AB),则C 度。4、如果ABC的一个外角等于1500,且BC,则A 。5、如果ABC中,ACB900,CD是AB边上的高,则与A相等的角是 。6、如图,在ABC中,A800,ABC和ACB的外角平分线相交于点D,那么BDC 。7、如图,CE平分ACB,且CEDB,DABDBA,AC18cm,CBD的周长为28 cm,则DB 。8、纸片ABC中,A650,B750,将纸片的一角折叠,使点C落
2、在ABC内(如图),若1200,则2的度数为 。9、在ABC中,A500,高BE、CF交于点O,则BOC 。 二、选择题:1、若ABC的三边之长都是整数,周长小于10,则这样的三角形共有( )A、6个 B、7个 C、8个 D、9个2、在ABC中,ABAC,D在AC上,且BDBCAD,则A的度数为( )A、300 B、360 C、450 D、7203、等腰三角形一腰上的中线分周长为15和12两部分,则此三角形底边之长为( )A、7 B、11 C、7或11 D、不能确定4、在ABC中,B500,ABAC,则A的取值范围是( )A、00A1800 B、00A800 C、500A1300 D、800A
3、13005、如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是( )A、锐角三角形 B、直角三角形 C、钝角三角形 D、正三角形三、解答题:1、有5根木条,其长度分别为4,8,8,10,12,用其中三根可以组成几种不同形状的三角形?2、长为2,3,5的线段,分别延伸相同长度的线段后,能否组成三角形?若能,它能构成直角三角形吗?为什么?3、如图,在ABC中,A960,延长BC到D,ABC与ACD的平分线相交于,BC与CD的平分线相交于,依此类推,BC与CD的平分线相交于,则的大小是多少?4、如图,已知OA,P是射线ON上一动点(即P可在射线ON上运动),AO
4、N600,填空:(1)当OP 时,AOP为等边三角形;(2)当OP 时,AOP为直角三角形;(3)当OP满足 时,AOP为锐角三角形;(4)当OP满足 时,AOP为钝角三角形。 2、等腰三角形一、填空题:1、等腰三角形的两外角之比为52,则该等腰三角形的底角为 。2、在ABC中,ABAC,BD平分ABC交AC于D,DE垂直平分AB,E为垂足,则C 。3、等腰三角形的两边长为4和8,则它腰上的高为 。4、在ABC中,ABAC,点D在AB边上,且BDBCAD,则A的度数为 。5、如图,ABBCCD,ADAE,DEBE,则C的度数为 。 6、如图,D为等边ABC内一点,DBDA,BPAB,DBPDB
5、C,则BPD 。7、如图,在ABC中,AD平分BAC,EGAD分别交AB、AD、AC及BC的延长线于点E、H、F、G,已知下列四个式子: 1(23) 12(32)4(32) 41其中有两个式子是正确的,它们是 和 。二、选择题:1、等腰三角形中一内角的度数为500,那么它的底角的度数为( )A、500 B、650 C、1300 D、500或6502、如图,D为等边ABC的AC边上一点,且ACEABD,CEBD,则ADE是( )A、等腰三角形 B、直角三角形 C、不等边三角形 D、等边三角形 3、如图,在ABC中,ABC600,ACB450,AD、CF都是高,相交于P,角平分线BE分别交AD、C
6、F于Q、S,那么图中的等腰三角形的个数是( ) A、2 B、3 C、4 D、54、如图,已知BO平分CBA,CO平分ACB,且MNBC,设AB12,BC24,AC18,则AMN的周长是( )A、30 B、33 C、36 D、39 5、如图,在五边形ABCDE中,AB1200,EAABBCDCDE,则D( )A、300 B、450 C、600 D、67.50三、解答题:1、如图,在ABC中,ABAC,D、E、F分别为AB、BC、CA上的点,且BDCE,DEFB。求证:DEF是等腰三角形。 2、为美化环境,计划在某小区内用30平方米的草皮铺设一块边长为10米的等腰三角形绿地。请你求出这个等腰三角形
7、绿地的另两边长。3、如图,在锐角ABC中,ABC2C,ABC的平分线与AD垂直,垂足为D,求证:AC2BD。 4、在等边ABC的边BC上任取一点D,作DAE600,AE交C的外角平分线于E,那么ADE是什么三角形?证明你的结论。3、全等三角形一、填空题:1、若ABCEFG,且B600,FGEE560,则A 度。2、如图,ABEFDC,ABC900,ABDC,那么图中有全等三角形 _对。3、如图,在ABC中,C900,BC40,AD是BAC的平分线交BC于D,且DCDB35,则点D到AB的距离是 。 4、如图,在ABC中,ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当
8、的条件: ,使AEHCEB。5、如图,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段 (不包括ABCD和ADBC)。6、如图,EF900,BC,AEAF。给出下列结论:12;BECF;ACNABM;CDDN。其中正确的结论是 _(填序号)。二、选择题:1、如图,ADAB,EAAC,AEAD,ABAC,则下列结论中正确的是( ) A、ADFAEG B、ABEACDC、BMFCNG D、ADCABE2、如图,AEAF,ABAC,EC与BF交于点O,A600,B250,则EOB的度数为( ) A、600 B、700 C、750 D、8503. 三角形的两边
9、和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角( ) A、相等 B、不相等 C、互余 D、互补或相等三、解答题: 1、如图,12,34,ECAD。求证:ABE和BDC是等腰三角形。 2、如图,ABAE,ABCAED,BCED,点F是CD的中点。(1)求证:AFCD;(2)在你连结BE后,还能得出什么新结论?请再写两个。3、(1)已知,在ABC和DEF中,ABDE,BCEF,BACEDF1000,求证:ABCDEF; (2)上问中,若将条件改为ABDE,BCEF,BACEDF700,结论是否还成立,为什么?4、如图,已知MON的边OM上有两点A、B,边ON上有两点C、D,且ABC
10、D,P为MON的平分线上一点。问:(1)ABP与PCD是否全等?请说明理由。(2)ABP与PCD的面积是否相等?请说明理由。 5、如图,已知CEAB,DFAB,点E、F分别为垂足,且ACBD。(1)根据所给条件,指出ACE和BDF具有什么关系?请你对结论予以证明。(2)若ACE和BDF不全等,请你补充一个条件,使得两个三角形全等,并给予证明。 二四边形一、填空:1、对角线_平行四边形是矩形。2、如图已知O是ABCD的对角线交点,AC24,BD38,AD14,那么OBC的周长等于_ABDCOADBCFEABDCEABDCO3、在平行四边形ABCD中,CB+D,则A_,D_4、一个平行四边形的周长
11、为70cm,两边的差是10cm,则平行四边形各边长为_cm。5、已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为_cm。6、菱形ABCD中,A60o,对角线BD长为7cm,则此菱形周长_cm。7、如果一个正方形的对角线长为,那么它的面积_。8、如图2矩形ABCD的两条对角线相交于O,AOB60o,AB8,则矩形对角线的长_9、如图3,等腰梯形ABCD中,ADBC,ABDE,BC8,AB6,AD5则CDE周长_。10、正方形的对称轴有_条11、如图4,BD是ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是_12、要从一张长为
12、40cm,宽为20cm的矩形纸片中,剪出长为18cm,宽为12cm的矩形纸片,最多能剪出_张。二、选择题:13、在ABCD中,A:B:C:D的值可以是()A、1:2:3:4B、1:2:2:1C、2:2:1:1D、2:1:2:114、菱形和矩形一定都具有的性质是()A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角线互相平分且相等15、下列命题中的假命题是()A、等腰梯形在同一底边上的两个底角相等B、对角线相等的四边形是等腰梯形C、等腰梯形是轴对称图形D、等腰梯形的对角线相等16、四边形ABCD的对角线AC、BD交于点O,能判定它是正方形的是()A、AOOC,OBOD B、AOBOCOD
13、O,ACBDC、AOOC,OBOD,ACBDD、AOOCOBOD17、给出下列四个命题一组对边平行的四边形是平行四边形一条对角线平分一个内角的平行四边形是菱形两条对角线互相垂直的矩形是正方形顺次连接等腰梯形四边中点所得四边形是等腰梯形。其中正确命题的个数为() A、1个B、2个C、3个D、4个18、下列矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是()中点中点中点ABCD三、解答题19、如图:在ABCD中,BAD的平分线AE交DC于E,若DAE25o,求C、B的度数。ECDAB 20、已知在梯形ABCD中,ADBC,ABDC,D120o,对角线CA平分BCD,且梯形的周长20,求
14、AC。ADBC21、如图:在正方形ABCD中,E为CD边上的一点,F为BC的延长线上一点,CECF。BCE与DCF全等吗?说明理由;若BEC60o,求EFD。DAE60oFBC22证明题:如图,ABC中ACB90o,点D、E分别是AC,AB的中点,点F在BC的延长线上,且CDFA。 求证:四边形DECF是平行四边形。ABDCFE23、已知:如图所示,ABC中,E、F、D分别是AB、AC、BC上的点,且DEAC,DFAB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是_, 试证明:这个多边形是菱形。AEFCDB24、应用题某村要挖一条长1500米的水渠,渠道的横断面为等腰梯
15、形,渠道深0.8米,渠底宽为1.2米,腰与渠底的夹角为135o,问挖此渠需挖出土多少方?25、(10分)观察下图正方形A中含有个小方格,即A的面积为个单位面积。正方形B中含有个小方格,即B的面积为个单位面积。正方形C中含有个小方格,即C的面积为个单位面积。你从中得到的规律是:。CBA (1)三角形的有关概念答案一、填空题:1、;2、2;3、1200;4、300或1200;5、DCB;6、500;7、8cm;8、600;9、1300; 二、选择题:CBCBB三、解答题:1、6种(4、8、8;4、8、10;8、8、10;8、8、12;8、10、12、4、10、12)2、可以,设延伸部分为,则长为,
16、的三条线段中,最长 只要,长为,的三条线段可以组成三角形,设长为的线段所对的角为,则为ABC的最大角,又由,当,即时,ABC为直角三角形。 3、304、(1);(2)或;(3)OP;(4)0OP或OP(2)等腰三角形参考答案一、填空题:1、300;2、720;3、;4、360;5、360;6、300;7、二、选择题:DDDAC 三、解答题:1、证DBEECF2、提示:分两种情况讨论。不妨设AB10米,作CDAB于D,则CD6米。(1)当AB为底边时,ACBC米;(2)当AB为腰且三角形为锐角三角形时,ABAC10米,BC米;(3)当AB为腰且三角形为钝角三角形时,ABBC10米,AC米;3、提
17、示:延长AD交BC于点M。 4、ADE为等边三角形。(3)全等三角形参考答案一、填空题:1、32;2、3;3、15;4、AHBC或EAEC或EHEB等;5、DCDE或BCBE或OAOE等;6、 二、选择题:BBDA三、解答题:1、略; 2、(1)略;(2)AFBE,AF平分BE等;3、(1)略;(2)不成立,举一反例即能说明; 4、(1)不一定全等,因ABP与PCD中,只有ABCD,而其它角和边都有可能不相等,故两三角形不一定全等。(2)面积相等,因为OP为MON平分线上一点,故P到边AB、CD上的距离相等,即ABP中AB边上的高与PCD中CD边上的高相等,又根据ABCD(即底边也相等)从而A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 几何 练习 专项 训练
限制150内