专题10 圆锥曲线- 2023年高考真题和模拟题数学分项汇编(全国通用)(解析版).docx
《专题10 圆锥曲线- 2023年高考真题和模拟题数学分项汇编(全国通用)(解析版).docx》由会员分享,可在线阅读,更多相关《专题10 圆锥曲线- 2023年高考真题和模拟题数学分项汇编(全国通用)(解析版).docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题10 圆锥曲线-(新课标全国卷)1设椭圆的离心率分别为若,则()ABCD【答案】A【详解】由,得,因此,而,所以.故选:A(新课标全国卷)2已知双曲线的左、右焦点分别为点在上,点在轴上,则的离心率为_【答案】/ 【详解】方法一:依题意,设,则,在中,则,故或(舍去),所以,则,故,所以在中,整理得,故.方法二:依题意,得,令,因为,所以,则,又,所以,则,又点在上,则,整理得,则,所以,即,整理得,则,解得或,又,所以或(舍去),故.故答案为:.(新课标全国卷)3在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为(1)求的方程;(2)已知矩形有三个顶点在上,证明:矩形的周长大于【
2、答案】(1)(2)见解析【详解】(1)设,则,两边同平方化简得,故.(2)法一:设矩形的三个顶点在上,且,易知矩形四条边所在直线的斜率均存在,且不为0,则,令,同理令,且,则,设矩形周长为,由对称性不妨设,则.,易知则令,令,解得,当时,此时单调递减,当,此时单调递增,则,故,即.当时,且,即时等号成立,矛盾,故,得证.法二:不妨设在上,且,依题意可设,易知直线,的斜率均存在且不为0,则设,的斜率分别为和,由对称性,不妨设,直线的方程为,则联立得,则则,同理,令,则,设,则,令,解得,当时,此时单调递减,当,此时单调递增,则,但,此处取等条件为,与最终取等时不一致,故.法三:为了计算方便,我们
3、将抛物线向下移动个单位得抛物线,矩形变换为矩形,则问题等价于矩形的周长大于.设 , 根据对称性不妨设 . 则 , 由于 , 则 .由于 , 且 介于 之间, 则 . 令 ,则,从而故当时,当 时,由于,从而,从而又,故,由此,当且仅当时等号成立,故,故矩形周长大于.(新课标全国卷)4已知椭圆的左、右焦点分别为,直线与C交于A,B两点,若面积是面积的2倍,则()ABCD【答案】C【详解】将直线与椭圆联立,消去可得,因为直线与椭圆相交于点,则,解得,设到的距离到距离,易知,则,解得或(舍去),故选:C.(新课标全国卷)5设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则()
4、ABC以MN为直径的圆与l相切D为等腰三角形【答案】AC【详解】A选项:直线过点,所以抛物线的焦点,所以,则A选项正确,且抛物线的方程为.B选项:设,由消去并化简得,解得,所以,B选项错误.C选项:设的中点为,到直线的距离分别为,因为,即到直线的距离等于的一半,所以以为直径的圆与直线相切,C选项正确.D选项:直线,即,到直线的距离为,所以三角形的面积为,由上述分析可知,所以,所以三角形不是等腰三角形,D选项错误.故选:AC.(新课标全国卷)6已知双曲线C的中心为坐标原点,左焦点为,离心率为(1)求C的方程;(2)记C的左、右顶点分别为,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交
5、于点P证明:点在定直线上.【答案】(1)(2)证明见解析.【详解】(1)设双曲线方程为,由焦点坐标可知,则由可得,双曲线方程为.(2)由(1)可得,设,显然直线的斜率不为0,所以设直线的方程为,且,与联立可得,且,则,直线的方程为,直线的方程为,联立直线与直线的方程可得:,由可得,即,据此可得点在定直线上运动.(全国乙卷数学(文)(理))7设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是()ABCD【答案】D【详解】设,则的中点,可得,因为在双曲线上,则,两式相减得,所以.对于选项A: 可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故A错误;对于选项B:可得,则,
6、联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故B错误;对于选项C:可得,则由双曲线方程可得,则为双曲线的渐近线,所以直线AB与双曲线没有交点,故C错误;对于选项D:,则,联立方程,消去y得,此时,故直线AB与双曲线有交两个交点,故D正确;故选:D.(全国乙卷数学(文)(理))8已知点在抛物线C:上,则A到C的准线的距离为_.【答案】【详解】由题意可得:,则,抛物线的方程为,准线方程为,点到的准线的距离为.故答案为:.(全国乙卷数学(文)(理))9已知椭圆的离心率是,点在上(1)求的方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点【答案】(1)(2)证明见
7、详解【详解】(1)由题意可得,解得,所以椭圆方程为.(2)由题意可知:直线的斜率存在,设,联立方程,消去y得:,则,解得,可得,因为,则直线,令,解得,即,同理可得,则,所以线段的中点是定点.(全国甲卷数学(文)10设为椭圆的两个焦点,点在上,若,则()A1B2C4D5【答案】B【详解】方法一:因为,所以,从而,所以故选:B.方法二:因为,所以,由椭圆方程可知,所以,又,平方得:,所以故选:B.(全国甲卷数学(文)(理)11已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()ABCD【答案】D【详解】由,则,解得,所以双曲线的一条渐近线不妨取,则圆心到渐近线的距离,所以弦长.故选:D
8、(全国甲卷数学(文)(理)12已知直线与抛物线交于两点,且(1)求;(2)设C的焦点为F,M,N为C上两点,求面积的最小值【答案】(1)(2)【详解】(1)设,由可得,所以,所以,即,因为,解得:(2)因为,显然直线的斜率不可能为零,设直线:,由可得,所以,因为,所以,即,亦即,将代入得,所以,且,解得或设点到直线的距离为,所以,所以的面积,而或,所以,当时,的面积(全国甲卷数学(理)13己知椭圆,为两个焦点,O为原点,P为椭圆上一点,则()ABCD【答案】B【详解】方法一:设,所以,由,解得:,由椭圆方程可知,所以,解得:,即,因此故选:B方法二:因为,即,联立,解得:,而,所以,即故选:B
9、方法三:因为,即,联立,解得:,由中线定理可知,易知,解得:故选:B(新高考天津卷)14双曲线的左、右焦点分别为过作其中一条渐近线的垂线,垂足为已知,直线的斜率为,则双曲线的方程为()ABCD【答案】D【详解】如图,因为,不妨设渐近线方程为,即,所以,所以.设,则,所以,所以.因为,所以,所以,所以,所以,因为,所以,所以,解得,所以双曲线的方程为故选:D(新高考天津卷)15过原点的一条直线与圆相切,交曲线于点,若,则的值为_【答案】【详解】易知圆和曲线关于轴对称,不妨设切线方程为,所以,解得:,由解得:或,所以,解得:当时,同理可得故答案为:(新高考天津卷)16设椭圆的左右顶点分别为,右焦点
10、为,已知(1)求椭圆方程及其离心率;(2)已知点是椭圆上一动点(不与端点重合),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程【答案】(1)椭圆的方程为,离心率为.(2).【详解】(1)如图,由题意得,解得,所以,所以椭圆的方程为,离心率为.(2)由题意得,直线斜率存在,由椭圆的方程为可得,设直线的方程为,联立方程组,消去整理得:,由韦达定理得,所以,所以,.所以,,所以,所以,即,解得,所以直线的方程为.一、单选题1(2023河北沧州校考模拟预测)已知双曲线,为原点,分别为该双曲线的左,右顶点分别为该双曲线的左、右焦点,第二象限内的点在双曲线的渐近线上,为的平分线,且线段的长为
11、焦距的一半,则该双曲线的离心率为()ABC2D【答案】C【详解】因为为的平分线,所以,又因为,所以,设,因为点在渐近线上,所以,因为,所以,所以,所以,又点在第二象限内,所以,所以点的坐标为,所以,所以,所以,所以,可得,故选:C.2(2022湖南常德常德市一中校考二模)已知双曲线的离心率e是它的一条渐近线斜率的2倍,则e=()ABCD2【答案】C【详解】由题意可知,即,则,解得:,所以双曲线的离心率.故选:C3(2023四川广安四川省广安友谊中学校考模拟预测)油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,广安市文化宫于春分时节开展油纸伞文化艺术节活动中将油纸伞
12、撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为3的圆,圆心到伞柄底端距离为3,阳光照射油纸伞在地面形成了一个椭圆形影子(春分时,广安的阳光与地面夹角为),若伞柄底端正好位于该椭圆的焦点位置,则该椭圆的离心率为()ABCD【答案】C【详解】如图,伞的伞沿与地面接触点B是椭圆长轴的一个端点,伞沿在地面上最远的投影点A是椭圆长轴的另一个端点,对应的伞沿为C,O为伞的圆心,F为伞柄底端,即椭圆的左焦点,设椭圆的长半轴长为,半焦距为,由,得,在中,则,由正弦定理得,解得,则,所以该椭圆的离心率.故选:C.4(2023河南校联考模拟预测)已知直线与椭圆交于两点,若点恰为弦的中点,则椭圆的离心
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学精品资料 新高考数学精品专题 高考数学压轴冲刺 高中数学课件 高中数学学案 高一高二数学试卷 数学模拟试卷 高考数学解题指导
限制150内