高中数学必修4平面向量知识点总结.docx
《高中数学必修4平面向量知识点总结.docx》由会员分享,可在线阅读,更多相关《高中数学必修4平面向量知识点总结.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修4平面向量知识点总结中学数学必修4平面对量学问点总结 本文关键词:向量,学问点,必修,中学数学,平面中学数学必修4平面对量学问点总结 本文简介:中学数学必修4学问点总结平面对量学问点归纳一.向量的基本概念与基本运算1向量的概念:向量:既有大小又有方向的量向量一般用来表示,或用有向线段的起点与终点的大写字母表示,如:几何表示法,;坐标表示法向量的大小即向量的模(长度),记作|即向量的大小,记作向量不能比较大小,但向量的模可以比较大中学数学必修4平面对量学问点总结 本文内容:中学数学必修4学问点总结平面对量学问点归纳一.向量的基本概念与基本运算1向量的概念:向量:既有大小又有方向的量向
2、量一般用来表示,或用有向线段的起点与终点的大写字母表示,如:几何表示法,;坐标表示法向量的大小即向量的模(长度),记作|即向量的大小,记作向量不能比较大小,但向量的模可以比较大小零向量:长度为0的向量,记为,其方向是随意的,与随意向量平行零向量0由于的方向是随意的,且规定平行于任何向量,故在有关向量平行(共线)的问题中务必看清晰是否有“非零向量”这个条件(留意与0的区分)单位向量:模为1个单位长度的向量向量为单位向量1平行向量(共线向量):方向相同或相反的非零向量随意一组平行向量都可以移到同始终线上方向相同或相反的向量,称为平行向量记作由于向量可以进行随意的平移(即自由向量),平行向量总可以平
3、移到同始终线上,故平行向量也称为共线向量数学中探讨的向量是自由向量,只有大小、方向两个要素,起点可以随意选取,现在必需区分清晰共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为大小相等,方向相同2向量加法求两个向量和的运算叫做向量的加法设,则+=(1);(2)向量加法满意交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减
4、向量(2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最终一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则向量加法的三角形法则可推广至多个向量相加:,但这时必需“首尾相连”3向量的减法相反向量:与长度相等、方向相反的向量,叫做的相反向量记作,零向量的相反向量仍是零向量关于相反向量有:(i)=;(ii)+()=()+=;(iii)若、是互为相反向量,则=,=,+=向量减法:向量加上的相反向量叫做与的差,记作:求两个向量差的运算,叫做向量的减法作图法:可以表示为从的终点指向的终
5、点的向量(、有共同起点)4实数与向量的积:实数与向量的积是一个向量,记作,它的长度与方向规定如下:();()当时,的方向与的方向相同;当时,的方向与的方向相反;当时,方向是随意的数乘向量满意交换律、结合律与安排律5两个向量共线定理:向量与非零向量共线有且只有一个实数,使得=6平面对量的基本定理:假如是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:,其中不共线的向量叫做表示这一平面内全部向量的一组基底7特殊留意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区分,向量平行是向量相等的必要条件(3)向量平行与直线平行有区分,直线平行不包括共线(即重合),而
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 平面 向量 知识点 总结
限制150内