高二文科数学知识点汇总.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高二文科数学知识点汇总.docx》由会员分享,可在线阅读,更多相关《高二文科数学知识点汇总.docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二文科数学知识点汇总篇一:新课标 中学文科数学学问点总结 中学数学 必修1学问点 第一章 集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N表示自然数集,N ?或N?表示正整数集,Z 表示整数集,Q表示有理数集,R表示实数集. (3)集合与元素间的关系 对象a与集合M的关系是a?M,或者a?M,两者必居其一. (4)集合的表示法 自然语言法:用文字叙述的形式来描述集合. 列举法:把集合中的元素一一列举出来,写在大括号内表示集合. 描述法:x|x具有的性质,其中x为集合的代表元素. 图示法:用数轴或韦恩图来表示
2、集合. (5)集合的分类 含有有限个元素的集合叫做有限集.含有无限个元素的集合叫做无限集.不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等 (7)已知集合真子集. A有n(n?1)个元素,则它有2n个子集,它有2n?1个真子集,它有2n?1个非空子集,它有2n?2非空 【1.1.3】集合的基本运算 (8)交集、并集、补集 【补充学问】含肯定值的不等式与一元二次不等式的解法 (1)含肯定值的不等式的解法 (2)一元二次不等式的解法 1.2函数及其表示 【1.2.1】函数的概念 (1)函数的概念 设的数A、B是两个非空的数集,假如根据某种对应法则f
3、,对于集合A中任何一个数x,在集合B中都有唯一确定 f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f )叫做集合 A到B的一个函数, 记作 f:A?B 函数的三要素:定义域、值域和对应法则 只有定义域相同,且对应法则也相同的两个函数才是同一函数 (2)区间的概念及表示法 设a,b是两个实数,且a ?b,满意a?x?b的实数x的集合叫做闭区间,记做a,b;满意a?x?b的实数 x的集合叫做开区间,记做(a,b);满意a?x?b,或a?x?b的实数x的集合叫做半开半闭区间,分别记做 a,b),(a,b;满意x?a,x?a,x?b,x?b的实数x的集合分别记做a,?),(a,?
4、),(?,b,(?,b)留意:对于集合x|a? x?b与区间(a,b),前者a可以大于或等于b,而后者必需 a?b (3)求函数的定义域时,一般遵循以下原则: f(x)是整式时,定义域是全体实数 f(x)是分式函数时,定义域是使分母不为零的一切实数 f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合 对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1 y?tanx中,x?k? ? 2 (k?Z) 零(负)指数幂的底数不能为零 若 f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集 对于求复合函数定义域问题
5、,一般步骤是:若已知等式a? f(x)的定义域为a,b,其复合函数fg(x)的定义域应由不 g(x)?b解出 对于含字母参数的函数,求其定义域,依据问题详细状况需对字母参数进行分类探讨 由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义 (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,假如在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同求函数值域与最值的常用方法: 视察法:对于比较简洁的函数,我们可以通过视察干脆得到值域或最值 配方法:将函数解析式化成含有自变量的
6、平方式与常数的和,然后依据变量的取值范围确定函数的值域或最值 判别式法:若函数 y?f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2?b(y)x?c(y)?0,则在 a(y)?0时,由于x,y为实数,故必需有?b2(y)?4a(y)?c(y)?0,从而确定函数的值域或最值 不等式法:利用基本不等式确定函数的值域或最值 换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问 题 反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值 数形结合法:利用函数图象或几何方法确定函数的值域或最值 函数的单调性法 【1.2.2
7、】函数的表示法 (5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对应关系图 象法:就是用图象表示两个变量之间的对应关系 (6)映射的概念 设 A、B是两个集合,假如根据某种对应法则f ,对于集合 A中任何一个元素,在集合B中都有唯一的元素和它 )叫做集合 对应,那么这样的对应(包括集合 A,B以及A到B的对应法则fA到B的映射,记作f:A?B 给定一个集合 A到集合B的映射,且a?A,b?B假如元素a和元素b对应,那么我们把元素b叫做元素a的 象,元素a叫做元素b的原象 1.3函
8、数的基本性质 【1.3.1】单调性与最大(小)值 (1)函数的单调性 定义及判定方法 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数 对于复合函数 y?fg(x),令u?g(x),若y?f(u)为增,u?g(x)为增,则y?fg(x)为增;若 y?f(u)为减,u?g(x)为减,则y?fg(x)为增;若y?f(u)为增,u?g(x)为减,则y?fg(x)为 减;若 y?f(u)为减,u?g(x)为增,则y?fg(x)为减 a f(x)?x?(a?0)的图象与性质 x y (2)打“”函数 o x f(x )分别在(?,
9、、?)上为增函数,分别在、上为减函数 (3)最大(小)值定义一般地,设函数 y?f(x)的定义域为I,假如存在实数M满意:(1)对于随意的x?I,都有 是函数 f(x)?M ; (2)存在x0?I,使得 一般地,设函数 f(x0)?M那么,我们称Mf(x) 的最大值,记作fmax(x)?M (2)f(x)?m; y?f(x)的定义域为I,假如存在实数m满意:(1)对于随意的x?I,都有 存在x0?I,使得f(x0)?m那么,我们称m是函数f(x)的最小值,记作fmax(x)?m 【1.3.2】奇偶性 (4)函数的奇偶性 定义及判定方法 篇二:中学数学学问点总结(最全版) 数 学 知 识 点 总
10、 结 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面对量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个中学学生所必需学习的。 上述内容覆盖了中学阶段传统的数学基础学问和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些学问的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、
11、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修11:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修12:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修21:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修22:导数及其应用,推理与证明、数系的扩充与复数 选修23:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修31:数学史选讲。 选修32:信息平安与密码。 选修33:球面上的几何。 选修34:对称与群。 选修35:欧拉公式与闭曲面分类。 选修36:三等分角与数域扩充。 系列4:由10个专题组成。 选修
12、41:几何证明选讲。 选修42:矩阵与变换。 选修43:数列与差分。 选修44:坐标系与参数方程。 选修45:不等式选讲。 选修46:初等数论初步。 选修47:优选法与试验设计初步。 选修48:统筹法与图论初步。 选修49:风险与决策。 选修410:开关电路与布尔代数。 2重难点及考点: 重点:函数,数列,三角函数,平面对量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: 集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件 函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与 指数函数、对数与对数函数、函数的应用 数列:数列的有关概念、等差数列
13、、等比数列、数列求和、数列的应用 三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函 数的图象与性质、三角函数的应用 平面对量:有关概念与初等运算、坐标运算、数量积及其应用 不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、肯定值不等式、不等式的应 用 直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系 圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应 用 直线、平面、简洁几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量 排列、组合和概率:排列、组合应用题、二项式定理及
14、其应用 概率与统计:概率、分布列、期望、方差、抽样、正态分布 导数:导数的概念、求导、导数的应用 复数:复数的概念与运算 中学数学 必修1学问点第一章 集合与函数概念 1.1集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N表示自然数集,N?或N?表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集. (3)集合与元素间的关系 对象a与集合M的关系是a?M,或者a?M,两者必居其一. (4)集合的表示法 自然语言法:用文字叙述的形式来描述集合. 列举法:把集合中的元素一一列举出来,写在大括号内表示集合. 描述法:x|
15、x具有的性质,其中x为集合的代表元素. 图示法:用数轴或韦恩图来表示集合. (5)集合的分类 含有有限个元素的集合叫做有限集.含有无限个元素的集合叫做无限集.不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等 n nnn (7)已知集合A有n(n?1)个元素,则它有2个子集,它有2?1个真子集,它有2?1个非空子集,它有2?2 非空真子集. 【1.1.3】集合的基本运算 (1)含肯定值的不等式的解法 (2)一元二次不等式的解法 【1.2.1】函数的概念 (1)函数的概念 设A、B是两个非空的数集,假如根据某种对应法则f,对于集合A中任何一个数x,
16、在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到 B的一个函数,记作f:A?B 函数的三要素:定义域、值域和对应法则 只有定义域相同,且对应法则也相同的两个函数才是同一函数 (2)区间的概念及表示法 设a,b是两个实数,且a?b,满意a?x?b的实数x的集合叫做闭区间,记做a,b;满意a?x?b的实数x的集合叫做开区间,记做(a,b);满意a?x?b,或a?x?b的实数x的集合叫做半开半闭区间, ,分别记做ab),x?,a?x,b?的x实b数x的集合分别记做,(a,b;满意x?a a?,?)a,(?,)?b,?(,?b ? 留意:对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 文科 数学 知识点 汇总
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内